Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diamantartige Schichten sparen Treibstoff

09.06.2015

Werden Motorenkomponenten mit hartem Kohlenstoff beschichtet, reduzieren sich ihre Reibungswerte fast auf null. Weltweit ließen sich jedes Jahr Milliarden Liter Treibstoff sparen. Ein neues Laser-Verfahren ermöglicht nun die Beschichtung in Serie.

Werkstücke mit diamantähnlichem Kohlenstoff zu beschichten, um damit Reibung zu minimieren, ist bereits möglich. Fraunhofer-Forscher entwickelten nun das Laser-Arc-Verfahren, um Kohlenstoffschichten mit nahezu der Härte von Diamant großtechnisch in hohen Beschichtungsraten und großen Dicken aufzutragen. Werden Kohlenstoffschichten etwa auf Kolbenringe oder Kolbenbolzen von Motoren aufgebracht, sinkt der Verbrauch der Antriebe.


Mit dem Laser-Arc-Verfahren gelingt es Dr. Volker Weihnacht, Prof. Andreas Leson und Dr. Hans- Joachim Scheibe, reibungsmindernde verschleißarme Schichten auf Bauteilen abzuscheiden (v.l.n.r.).

Dirk Mahler/Fraunhofer

»Durch unsere Entwicklung könnte man bei konsequenter Anwendung in den kommenden zehn Jahren über 100 Milliarden Liter Treibstoff pro Jahr einsparen«, betont Prof. Andreas Leson vom Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden. Er bezieht sich dabei auf eine Studie, die 2012 im Fachjournal Tribology International veröffentlicht wurde.

Beschichtungen auf Kohlenstoffbasis werden bereits in der Serienproduktion eingesetzt. Dem Forscher-Team des IWS um Prof. Leson, Dr. Hans-Joachim Scheibe und Dr. Volker Weihnacht ist es jetzt gelungen, wasserstofffreie ta-C-Schichten im großtechnischen Maßstab in gleichbleibender Qualität herzustellen. Diese tetraedrischen amorphen Kohlenstoffschichten sind wesentlich härter und damit verschleißfester als herkömmliche diamantähnliche Schichten.

»Leider kann man Diamantstaub aber nicht einfach abkratzen und dann aufbügeln. Deshalb mussten wir einen anderen Weg finden«, erklärt Dr. Scheibe. Seit über dreißig Jahren beschäftigt sich der Forscher mit den reibungsmindernden Eigenschaften des Kohlenstoffs.

Gepulster Laser steuert den Lichtbogen

Wie bei alten Filmprojektoren wird beim Laser-Arc-Verfahren im Vakuum ein Lichtbogen zwischen einer Anode und dem Kohlenstoff als Kathode erzeugt. Um den Lichtbogen auszulösen, trifft ein Laser auf den Kohlenstoff. Es entsteht Plasma aus Kohlenstoff-Ionen, das sich im Vakuum auf den zu beschichtenden Bauteilen abscheidet.

Um industriell große Stückzahlen zu ermöglichen, fährt ein gepulster Laser vertikal eine rotierende Kohlenstoffwalze ab und steuert hierdurch den Lichtbogen. Die Walze wird gleichmäßig abgetragen. Für eine einheitliche glatte Beschichtung lenkt zudem ein Magnetfeld das Plasma ab und filtert Schmutzpartikel heraus.

Mit dem Laser-Arc-Verfahren können sehr dicke ta-C-Schichten von bis zu 20 Mikrometern mit hohen Beschichtungsraten abgeschieden werden. »Für bestimmte Einsatzfälle, insbesondere in der Automobilindustrie, sind große Schichtdicken entscheidend, da diese Bauteile über längere Zeiten enormen Belastungen ausgesetzt sind«, erläutert Dr. Weihnacht.

Der Automobil- und Motorradhersteller BMW arbeitet intensiv an der großtechnischen Umsetzung ta-C-beschichteter Bauteile in Motoren seiner Fahrzeugmodelle. Deren Treibstoffverbrauch wird hierdurch vermindert. Für Prof. Leson ist dies ein erster großer Schritt, um mit Hilfe des Laser-Arc-Verfahrens Ressourcen zu schonen. Doch für den Motorrad-Liebhaber hat die Entwicklung einen weiteren positiven Effekt.

»Dass wir durch unsere Forschung dazu beitragen, Motorrad fahren umweltverträglicher zu machen, lässt mich mit einem besseren Gewissen auf meine Maschine steigen«, betont der Wissenschaftler.

Für die Entwicklung des Laser-Arc-Verfahrens und der Anwendung von ta-C-Be-
schichtungen in der Serienfertigung erhalten Andreas Leson, Hans-Joachim Scheibe sowie Volker Weihnacht den Joseph-von-Fraunhofer-Preis 2015.

Weitere Informationen:

http://www.fraunhofer.de/de/presse/fraunhofer-preisverleihung-2015/diamantartige...

Dr. Ralf Jäckel | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Perowskit-Solarzellen: Es muss gar nicht perfekt sein
15.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Fraunhofer IMWS testet umweltfreundliche Mikroplastik-Alternativen in Kosmetikartikeln
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie