Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Diamant weich wird

29.11.2010
Nach Jahrhunderten entschlüsseln Freiburger Fraunhofer-Forscher den atomaren Mechanismus des Diamantschleifens

Es ist das härteste Material der Welt, und doch lässt sich Diamant nicht nur dazu benutzen andere Werkstoffe zu bearbeiten sondern lässt sich auch selbst schleifen. Bereits vor 600 Jahren wurden erste Diamanten geschliffen und die edlen Steine wurden schnell zum teuersten Schmuck und später zum unersetzlichen Industriewerkzeug.

Jetzt hat ein Team um Dr. Lars Pastewka und Prof. Michael Moseler vom Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg das Geheimnis gelüftet, warum sich Diamant überhaupt bearbeiten lässt. Seine Erkenntnisse macht das Team in der aktuellen online-Ausgabe von Nature Materials (http://dx.doi.org/10.1038/nmat2902) der Öffentlichkeit zugänglich.

Sie sind ein großer Schritt in der Tribologie, also der Reibungs- und Verschleißforschung, die heute trotz ihrer großen Bedeutung für die Industrie in ihren wissenschaftlichen Grundlagen noch weitgehend unverstanden ist.

Seit Jahrhunderten werden Diamanten von erfahrenen Handwerkern an einem Gußeisenrad geschliffen, das mit feinen Diamantsplittern gespickt ist und sich schnell, mit Umfangsgeschwindigkeiten von etwa 30 Meter in der Sekunde, dreht.

Am Ton des Schleifrads und mit ihrem sprichwörtlichen Fingerspitzengefühl erkennen erfahrene Diamantschleifer, wie sie den Rohdiamant halten müssen, um ihn zu glätten und eine polierte Oberfläche zu bekommen. Dass Diamant richtungsabhängig reagiert, sei schon lange bekannt, sagt Lars Pastewka. Physikalisch heißt das Phänomen Anisotropie. Die Kohlenstoffatome im Diamantgitter formen Ebenen und je nachdem, wie man den Diamant dreht, trägt man Ebenen ab, die leichter oder schwerer polierbar sind.

Seit Jahrhunderten suchen Forscher nach einer schlüssigen Erklärung dieser empirisch belegten Anistropie – bisher ohne Erfolg. Genauso wenig konnte bislang erklärt werden, wie es sein kann, dass sich das härteste Material überhaupt bearbeiten lässt. Die Freiburger Wissenschaftler haben beide Fragen jetzt mit Hilfe einer neu entwickelten Rechenmethode beantwortet.

Das Ergebnis bringt Michael Moseler für Laien so auf den Punkt: »In dem Moment, in dem der Diamant geschliffen wird, ist der Diamant kein Diamant mehr.« In einem mechano-chemischen Prozess entstehe – durch die schnelle Reibung zwischen den Diamantsplittern im Gusseisenrad und dem Rohdiamanten, der geschliffen werden soll – eine völlig andere »glasartige Kohlenstoffphase« auf der Edelsteinoberfläche. Wie schnell diese Materialphase entsteht, hängt entscheidend von der Kristallorientierung des Rohdiamanten ab. »Genau hier kommt also besagte Anisotropie ins Spiel«, erläutert Moseler.

Das neu entstandene Material auf der Diamantoberfläche, so Moseler, werde letztlich auf zweierlei Wegen »abgeschält«: Der Hobeleffekt der scharfkantigen Diamantsplitter im Rad kratze kontinuierlich kleine Kohlenstoff-Staubpartikel von der Oberfläche ab, was im Urzustand so gar nicht möglich wäre, weil der Diamant viel zu hart und die Bindungskräfte daher viel zu hoch wären. Den zweiten, genauso bedeutenden Angriff auf die sonst undurchdringlich harte Kristalloberfläche übernimmt der Sauerstoff (O) in der Luft. Dessen O2-Moleküle binden jeweils ein Kohlenstoffatom (C) aus den labilen, langen Kohlenstoffketten, die sich oben auf der glasigen Phase gebildet haben. Es entsteht das als Klimagas bekannte CO2, also Kohlendioxid.

Und wie ließ sich berechnen, wann und wie einzelne Atome aus der kristallinen Oberfläche herausgelöst werden? »Voraussetzung dafür war, dass wir uns genau angeschaut haben, was quantenmechanisch passiert, wenn eine Bindung zwischen den Atomen an der Oberfläche des Rohdiamanten bricht. Dafür haben wir das jeweilige Kraftfeld zwischen den Atomen genau analysiert«, erläutert Lars Pastewka.

Kenne man diese Kräfte genau genug, könne man das Brechen und das erneute entstehen von chemischen Bindungen zwischen den Atomen exakt beschreiben – und modellieren. »Und auf dieser Basis haben wir die Dynamik der Atome in der Reibfläche zwischen einem Diamantsplitter und dem Edelstein untersucht«, ergänzt Pastewka. Dazu haben er und seine Kollegen die Bahnen von rund 10.000 Diamantatomen berechnet und so am Bildschirm verfolgt. Ihre Gleichung ging auf: Ihr Modell kann sämtliche Prozesse des staubigen und nicht nur deshalb lange undurchsichtigen Diamantschleifens erklären.

Das entwickelte Modell ist nicht nur ein Meilenstein in der Diamantforschung, »es demonstriert viel mehr auch wie mit modernen Methoden der Werkstoffsimulation Reibungs- und Verschleißprozesse von der atomaren Ebene bis zum makroskopischen Objekt exakt beschrieben werden können«, meint Institutsleiter Prof. Peter Gumbsch. Er sieht dies als ein Beispiel aus der Vielzahl von Verschleißfragen, die in der Industrie noch auf eine Lösung warten. Diesen will sich das Fraunhofer IWM in seinem Mikrotribologiezentrum µTC unter dem Motto zuwenden: „Tribologie berechenbar machen“.

Weitere Informationen:
http://dx.doi.org/10.1038/nmat2902 Anisotropic mechanical amorphisation drives wear in diamond, L. Pastewka, S. Moser, P. Gumbsch, M. Moseler, Nature Materials advance online publication

Thomas Götz | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscher spinnen künstliche Seide aus Kuhmolke
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie