Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diamant als Baustoff für optische Schaltkreise

10.04.2013
Der Einsatz von Licht zur Informationsverarbeitung öffnet viele Möglichkeiten.

Um die Photonen des Lichts jedoch gezielt in Schaltkreisen und Sensoren einzusetzen, werden Materialien benötigt, die die richtigen optischen und mechanischen Eigenschaften mitbringen.


Zwei parallele freistehende Wellenleiter aus polykristallinem Diamant dienen als mechanische Resonatoren. In ihnen breiten sich optische Felder aus (rot/blau). Grafik: KIT/CFN/Pernice

Forscher am Karlsruher Institut für Technologie (KIT) haben nun erstmals polykristallinen Diamant für einen optischen Schaltkreis eingesetzt und ihre Ergebnisse bei Nature Communications online veröffentlicht. (DOI: 10.1038/ncomms2710)

„Diamant hat mehrere Eigenschaften, die es uns ermöglichen, alle Komponenten eines einsatzbereiten optomechanischen Schaltkreises sozusagen aus einem Guss zu realisieren“, sagt Wolfram Pernice Gruppenleiter am KIT. „Die so hergestellten Elemente - die Resonatoren, Schaltkreise und der Wafer - überzeugen durch ihre hohe Qualität.“

Diamant ist durchsichtig, also optisch transparent für Lichtwellen aus einem weiten Wellenlängenbereich, der auch das sichtbare Spektrum zwischen 400 und 750 Nanometer Wellenlänge abdeckt. Damit lässt er sich gezielt in optomechanischen Schaltungen für Anwendungen in der Sensorik, der Fluoreszenz-Bildgebung oder für neuartige optische Messmethoden in der Biologie einsetzen. Sein hoher Brechungsindex und das Fehlen von Absorption sorgen für einen effizienten Transport der Photonen. Darüber hinaus macht ihn sein hohes Elastizitätsmodul zu einem robusten Werkstoff, der sich gleichzeitig hervorragend an raue Oberflächen anpasst und dabei noch die Eigenschaft hat, Wärme schnell wieder abzugeben.

Bislang wurden optische Schaltkreise nur mit einkristallinen Diamantsubstraten realisiert. Das sind hochreine Kristalle, bei denen unter einer Milliarden Diamant-Atomen höchstens ein Fremdatom vorkommt. Ihre Herstellung ist auf kleine Größen begrenzt und erfordert ein anspruchsvolles Verfahren, um sie auf Isolatoren, die für einen Schaltkreis benötigt werden, aufzubringen.
Die Forschungsgruppe von Pernice nutzte für die Realisierung ihrer optomechanischen Schaltkreise auf einem Wafer erstmals polykristallinen Diamant. Dieser weist zwar unregelmäßigere Kristallstrukturen auf, verhält sich aber insgesamt robuster und lässt sich entsprechend einfacher auf Isolatoren aufbringen. Dadurch kann man ihn großflächiger als den einkristallinen Diamanten verarbeiten. Er leitet die Photonen nahezu genauso effizient weiter wie einkristallines Diamantsubstrat und ist für den industriellen Einsatz geeignet. Das neue Material hat die Realisierung eines optomechanischen Bauteiles aus einem Guss erst ermöglicht.

Die Optomechanik verbindet die integrierte Optik mit mechanischen Elementen - im Fall des optomechanischen Schaltkreises der Gruppe Pernice mit nanomechanischen Resonatoren. Diese schwingfähigen Systeme reagieren auf eine bestimmte Frequenz. Tritt diese Frequenz auf, schwingt der Resonator mit. „Nanomechanische Resonatoren gehören zu den empfindlichsten Sensoren überhaupt und werden für eine Vielzahl von Präzisionsmessungen eingesetzt. Allerdings ist es extrem schwierig, solche kleinsten Bauteile mit etablierten Messmethoden anzusprechen“, erklärt Patrik Rath, Erstautor der Studie. „In unserer Arbeit haben wir die Tatsache genutzt, dass heute nanophotonische Bauelemente größengleich mit nanoskaligen mechanischen Resonatoren angefertigt werden können. Reagiert der Resonator, werden entsprechende optische Signale direkt an den Schaltkreis weitergegeben.“ Diese Entwicklung ermöglichte die Kombination dieser beiden ehemals getrennten Forschungsfeldern und somit die Realisierung von sehr effizienten optisch-mechanischen Schaltungen.

Die integrierte Optik funktioniert ähnlich wie integrierte Schaltkreise. Optische Schaltkreise geben Information über Photonen weiter, in den uns vertrauten elektronischen Schaltkreisen geschieht dies über Elektronen. Ziel der integrierten Optik ist es, alle zum Aufbau eines optischen Kommunikationsprozesses erforderlichen Komponenten in einem integrierten optischen Schaltkreis unterzubringen und so den Umweg über elektrische Signale zu vermeiden. In beiden Fällen werden die Schaltkreise auf weniger als ein Millimeter dicken Platten, auf sogenannten Wafern, aufgebracht.
Der polykristalline Diamant wurde in Zusammenarbeit mit dem Fraunhofer Institut für Angewandte Festkörperphysik und der Firma Diamond Materials in Freiburg hergestellt. Die im Rahmen des Projekts „Integrated Quantum-Photonics" am DFG-Centrum für funktionelle Nanostrukturen (CFN) in Karlsruhe hergestellten Prototypen eröffnen neue Wege für komplett optisch gesteuerte Plattformen, wie sie in der Grundlagenforschung und in der erweiterten Sensor-Anwendung vermehrt benötigt werden. Sensor-Anwendungen sind beispielsweise Beschleunigungsmesser, die sie in zahlreichen elektronischen Geräten integriert sind: vom Sensor für den Airbag bis hin zur Wasserwaage für das Smartphone.

Die Studie auf dem Portal von Nature: http://www.nature.com/ncomms/index.html
Das DFG-Centrum für Funktionelle Nanostrukturen (CFN) hat sich einem wichtigen Bereich der Nanotechnologie verschrieben: den funktionellen Nanostrukturen. Ziel ist es durch exzellente interdisziplinäre und internationale Forschung Nano-Strukturen mit neuen technologischen Funktionen darzustellen sowie den ersten Schritt von der Grundlagenforschung zur Anwendung zu gehen. Zurzeit arbeiten in Karlsruhe mehr als 250 Wissenschaftler und Techniker über das CFN vernetzt in mehr als 80 Teilprojekten zusammen. Der Fokus liegt auf den Bereichen Nano-Photonik, Nano-Elektronik, Molekulare Nanostrukturen, Nano-Biologie und Nano-Energie. http://www.cfn.kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungs-zentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weitere Kontakte:

Tatjana Erkert
DFG-Centrum für Funktionelle
Nanostrukturen (CFN)
www.cfn.kit.edu
Tel.: +49 721 608-43409
Fax: +49 721 608-48496
E-Mail: tatjana.erkert@kit.edu
Kosta Schinarakis
PKM – Themenscout
Tel.: +49 721 608 41956
Fax: +49 721 608 43658
E-Mail:schinarakis@kit.edu

Monika Landgraf | KIT
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise