Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diamant als Baustoff für optische Schaltkreise

10.04.2013
Der Einsatz von Licht zur Informationsverarbeitung öffnet viele Möglichkeiten.

Um die Photonen des Lichts jedoch gezielt in Schaltkreisen und Sensoren einzusetzen, werden Materialien benötigt, die die richtigen optischen und mechanischen Eigenschaften mitbringen.


Zwei parallele freistehende Wellenleiter aus polykristallinem Diamant dienen als mechanische Resonatoren. In ihnen breiten sich optische Felder aus (rot/blau). Grafik: KIT/CFN/Pernice

Forscher am Karlsruher Institut für Technologie (KIT) haben nun erstmals polykristallinen Diamant für einen optischen Schaltkreis eingesetzt und ihre Ergebnisse bei Nature Communications online veröffentlicht. (DOI: 10.1038/ncomms2710)

„Diamant hat mehrere Eigenschaften, die es uns ermöglichen, alle Komponenten eines einsatzbereiten optomechanischen Schaltkreises sozusagen aus einem Guss zu realisieren“, sagt Wolfram Pernice Gruppenleiter am KIT. „Die so hergestellten Elemente - die Resonatoren, Schaltkreise und der Wafer - überzeugen durch ihre hohe Qualität.“

Diamant ist durchsichtig, also optisch transparent für Lichtwellen aus einem weiten Wellenlängenbereich, der auch das sichtbare Spektrum zwischen 400 und 750 Nanometer Wellenlänge abdeckt. Damit lässt er sich gezielt in optomechanischen Schaltungen für Anwendungen in der Sensorik, der Fluoreszenz-Bildgebung oder für neuartige optische Messmethoden in der Biologie einsetzen. Sein hoher Brechungsindex und das Fehlen von Absorption sorgen für einen effizienten Transport der Photonen. Darüber hinaus macht ihn sein hohes Elastizitätsmodul zu einem robusten Werkstoff, der sich gleichzeitig hervorragend an raue Oberflächen anpasst und dabei noch die Eigenschaft hat, Wärme schnell wieder abzugeben.

Bislang wurden optische Schaltkreise nur mit einkristallinen Diamantsubstraten realisiert. Das sind hochreine Kristalle, bei denen unter einer Milliarden Diamant-Atomen höchstens ein Fremdatom vorkommt. Ihre Herstellung ist auf kleine Größen begrenzt und erfordert ein anspruchsvolles Verfahren, um sie auf Isolatoren, die für einen Schaltkreis benötigt werden, aufzubringen.
Die Forschungsgruppe von Pernice nutzte für die Realisierung ihrer optomechanischen Schaltkreise auf einem Wafer erstmals polykristallinen Diamant. Dieser weist zwar unregelmäßigere Kristallstrukturen auf, verhält sich aber insgesamt robuster und lässt sich entsprechend einfacher auf Isolatoren aufbringen. Dadurch kann man ihn großflächiger als den einkristallinen Diamanten verarbeiten. Er leitet die Photonen nahezu genauso effizient weiter wie einkristallines Diamantsubstrat und ist für den industriellen Einsatz geeignet. Das neue Material hat die Realisierung eines optomechanischen Bauteiles aus einem Guss erst ermöglicht.

Die Optomechanik verbindet die integrierte Optik mit mechanischen Elementen - im Fall des optomechanischen Schaltkreises der Gruppe Pernice mit nanomechanischen Resonatoren. Diese schwingfähigen Systeme reagieren auf eine bestimmte Frequenz. Tritt diese Frequenz auf, schwingt der Resonator mit. „Nanomechanische Resonatoren gehören zu den empfindlichsten Sensoren überhaupt und werden für eine Vielzahl von Präzisionsmessungen eingesetzt. Allerdings ist es extrem schwierig, solche kleinsten Bauteile mit etablierten Messmethoden anzusprechen“, erklärt Patrik Rath, Erstautor der Studie. „In unserer Arbeit haben wir die Tatsache genutzt, dass heute nanophotonische Bauelemente größengleich mit nanoskaligen mechanischen Resonatoren angefertigt werden können. Reagiert der Resonator, werden entsprechende optische Signale direkt an den Schaltkreis weitergegeben.“ Diese Entwicklung ermöglichte die Kombination dieser beiden ehemals getrennten Forschungsfeldern und somit die Realisierung von sehr effizienten optisch-mechanischen Schaltungen.

Die integrierte Optik funktioniert ähnlich wie integrierte Schaltkreise. Optische Schaltkreise geben Information über Photonen weiter, in den uns vertrauten elektronischen Schaltkreisen geschieht dies über Elektronen. Ziel der integrierten Optik ist es, alle zum Aufbau eines optischen Kommunikationsprozesses erforderlichen Komponenten in einem integrierten optischen Schaltkreis unterzubringen und so den Umweg über elektrische Signale zu vermeiden. In beiden Fällen werden die Schaltkreise auf weniger als ein Millimeter dicken Platten, auf sogenannten Wafern, aufgebracht.
Der polykristalline Diamant wurde in Zusammenarbeit mit dem Fraunhofer Institut für Angewandte Festkörperphysik und der Firma Diamond Materials in Freiburg hergestellt. Die im Rahmen des Projekts „Integrated Quantum-Photonics" am DFG-Centrum für funktionelle Nanostrukturen (CFN) in Karlsruhe hergestellten Prototypen eröffnen neue Wege für komplett optisch gesteuerte Plattformen, wie sie in der Grundlagenforschung und in der erweiterten Sensor-Anwendung vermehrt benötigt werden. Sensor-Anwendungen sind beispielsweise Beschleunigungsmesser, die sie in zahlreichen elektronischen Geräten integriert sind: vom Sensor für den Airbag bis hin zur Wasserwaage für das Smartphone.

Die Studie auf dem Portal von Nature: http://www.nature.com/ncomms/index.html
Das DFG-Centrum für Funktionelle Nanostrukturen (CFN) hat sich einem wichtigen Bereich der Nanotechnologie verschrieben: den funktionellen Nanostrukturen. Ziel ist es durch exzellente interdisziplinäre und internationale Forschung Nano-Strukturen mit neuen technologischen Funktionen darzustellen sowie den ersten Schritt von der Grundlagenforschung zur Anwendung zu gehen. Zurzeit arbeiten in Karlsruhe mehr als 250 Wissenschaftler und Techniker über das CFN vernetzt in mehr als 80 Teilprojekten zusammen. Der Fokus liegt auf den Bereichen Nano-Photonik, Nano-Elektronik, Molekulare Nanostrukturen, Nano-Biologie und Nano-Energie. http://www.cfn.kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungs-zentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weitere Kontakte:

Tatjana Erkert
DFG-Centrum für Funktionelle
Nanostrukturen (CFN)
www.cfn.kit.edu
Tel.: +49 721 608-43409
Fax: +49 721 608-48496
E-Mail: tatjana.erkert@kit.edu
Kosta Schinarakis
PKM – Themenscout
Tel.: +49 721 608 41956
Fax: +49 721 608 43658
E-Mail:schinarakis@kit.edu

Monika Landgraf | KIT
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik