Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DIADEMS - Der Sensor hinter dem Funkeln

30.01.2015

Diamanten – das sind äußerst begehrte Klumpen aus Kohlenstoff. Doch während ihr Nutzen für Juweliere schon lange bekannt ist, werden ihre verborgenen Geheimnisse im DIADEMS-Projekt gerade erst aufgedeckt.

Die Wissenschaftler des Projekts verändern die Struktur von Diamantkristallen, sodass ein neuer Werkstoff mit vielen Anwendungsmöglichkeiten entsteht – von der Entwicklung intelligenter Medikamente bis hin zur nächsten Generation von Computern. Mithilfe des EU-Projekts bleibt Europa an der Spitze der Forschung auf dem Gebiet der atomaren Sensoren.


DIADEMS – Der Sensor hinter dem Funkeln

© Thinkstock

Im Projekt "DIADEMS" (DIAmond Devices Enabled Metrology and Sensing) wird ein einzelnes Atom in einem Diamantkristall durch ein Stickstoffatom ersetzt. Dieser Vorgang wird "Dotieren" genannt. Indem sie Stickstoff im Kristall einschließen, können die Forscher eine Atomstruktur mit immanenten magnetischen Eigenschaften herstellen, welche den Gesetzen der Quantenmechanik folgt.

"Das bedeutet, dass wir letztendlich winzige Sensoren zur Erkennung schwacher magnetischer Signale erschaffen können. Diese magnetischen Signale könnten es uns zum Beispiel ermöglichen, die elektrischen Aktivitäten von Neuronen auf einem Objektträger aus Diamant zu beobachten und zu sehen, wie sie interagieren", erklärt Dr. Tierry Debuisschert, Projektkoordinator von DIADEMS bei Thales in Frankreich.

"In Zukunft können wir möglicherweise erkennen, ob eine Nervenzelle während einer Behandlung auf eine Chemikalie reagiert oder nicht." Dieses Ergebnis würde die Erforschung neurodegenerativer Erkrankungen wie Alzheimer begünstigen.

Biowissenschaften, Physik, Chemie – wo auch immer Magnetfelder eine Rolle spielen, könnte DIADEMS etwas bewegen.

Eine Welt neuer Anwendungen eröffnet sich

Die innovative Möglichkeit, die Reaktion von Molekülen zu beobachten, indem man die Veränderungen beim Spin ihrer Elektronen interpretiert, bedeutet, dass Forscher genauestens analysieren können, was während chemischer Reaktionen auf molekularer und atomarer Ebene geschieht.

"Weil wir derart genaue Beobachtungen anstellen können, eröffnet sich ein breites Spektrum von Anwendungen", sagt Debuisschert.

Auch die Informatik könnte profitieren, da die Sensoren bei der Entwicklung kleiner Datenträger mit hoher Speicherdichte und damit viel höherer Kapazität und Betriebssicherheit verwendet werden können.

"Die Kapazität von Datenträgern wird immer größer, da die magnetischen Bereiche, auf denen die Informationen gespeichert werden, stetig verkleinert werden können. Indem wir im atomaren und molekularen Maßstab arbeiten, könnten wir diese Speichergeräte auf der Ebene steuern, die für eine sehr hohe Speicherdichte benötigt wird", fügt er hinzu.

Ergebnisse für die Forschung

Debuisschert ist fasziniert vom Zusammenspiel zwischen Atomphysik und Quantenmechanik und wie daraus praktische Anwendungen entstehen. "Wir befinden uns in einem industriellen Kontext, also müssen wir zeigen, dass am Ende der Forschung reale und vermarktbare Anwendungen stehen."

Die Tatsache, dass die DIADEMS-Mitglieder im Labor hergestellte Diamanten bei Zimmertemperatur einsetzen, bedeutet, dass die Technologie einfacher angewendet und vermarktet werden kann, sobald sie ausgereift ist. "Dennoch", so Debuisschert, "ist die finanzielle Unterstützung durch die EU im jetzigen Stadium unverzichtbar, da wir uns noch mitten in der Forschung befinden."

Die Vorteile der Arbeit auf EU-Ebene

Obwohl das Projekt ohne die Finanzierung durch die EU nicht existieren würde, ist für Debuisschert die Zusammenarbeit zwischen den Partnern aus Wissenschaft und Industrie ein besonders wichtiger Aspekt des EU-weiten Projekts. "Wir können direkt über alle neuen Ergebnisse aus den Laboratorien der EU informiert werden, was sehr viel Zeit spart, und der Ideenaustausch ist speziell auf europäische Projekte zugeschnitten", erklärt er.

"So bleiben wir den großen Konkurrenten aus dem Ausland gegenüber wettbewerbsfähig."

Das Projekt mit einer Laufzeit von vier Jahren startete im September 2013. Im Rahmen des Programms Future and Emerging Technologies (Künftige und neu entstehende Technologien) erhält es von der EU Fördergelder in Höhe von 6 Millionen Euro.

Link zur Projektwebsite
Horizon-Magazin

CORDIS | CORDIS - Top Storys
Weitere Informationen:
http://cordis.europa.eu/result/rcn/156015_de.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung
14.12.2017 | Universität Bayreuth

nachricht Warum Teige an Oberflächen kleben
14.12.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten