Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DIADEMS - Der Sensor hinter dem Funkeln

30.01.2015

Diamanten – das sind äußerst begehrte Klumpen aus Kohlenstoff. Doch während ihr Nutzen für Juweliere schon lange bekannt ist, werden ihre verborgenen Geheimnisse im DIADEMS-Projekt gerade erst aufgedeckt.

Die Wissenschaftler des Projekts verändern die Struktur von Diamantkristallen, sodass ein neuer Werkstoff mit vielen Anwendungsmöglichkeiten entsteht – von der Entwicklung intelligenter Medikamente bis hin zur nächsten Generation von Computern. Mithilfe des EU-Projekts bleibt Europa an der Spitze der Forschung auf dem Gebiet der atomaren Sensoren.


DIADEMS – Der Sensor hinter dem Funkeln

© Thinkstock

Im Projekt "DIADEMS" (DIAmond Devices Enabled Metrology and Sensing) wird ein einzelnes Atom in einem Diamantkristall durch ein Stickstoffatom ersetzt. Dieser Vorgang wird "Dotieren" genannt. Indem sie Stickstoff im Kristall einschließen, können die Forscher eine Atomstruktur mit immanenten magnetischen Eigenschaften herstellen, welche den Gesetzen der Quantenmechanik folgt.

"Das bedeutet, dass wir letztendlich winzige Sensoren zur Erkennung schwacher magnetischer Signale erschaffen können. Diese magnetischen Signale könnten es uns zum Beispiel ermöglichen, die elektrischen Aktivitäten von Neuronen auf einem Objektträger aus Diamant zu beobachten und zu sehen, wie sie interagieren", erklärt Dr. Tierry Debuisschert, Projektkoordinator von DIADEMS bei Thales in Frankreich.

"In Zukunft können wir möglicherweise erkennen, ob eine Nervenzelle während einer Behandlung auf eine Chemikalie reagiert oder nicht." Dieses Ergebnis würde die Erforschung neurodegenerativer Erkrankungen wie Alzheimer begünstigen.

Biowissenschaften, Physik, Chemie – wo auch immer Magnetfelder eine Rolle spielen, könnte DIADEMS etwas bewegen.

Eine Welt neuer Anwendungen eröffnet sich

Die innovative Möglichkeit, die Reaktion von Molekülen zu beobachten, indem man die Veränderungen beim Spin ihrer Elektronen interpretiert, bedeutet, dass Forscher genauestens analysieren können, was während chemischer Reaktionen auf molekularer und atomarer Ebene geschieht.

"Weil wir derart genaue Beobachtungen anstellen können, eröffnet sich ein breites Spektrum von Anwendungen", sagt Debuisschert.

Auch die Informatik könnte profitieren, da die Sensoren bei der Entwicklung kleiner Datenträger mit hoher Speicherdichte und damit viel höherer Kapazität und Betriebssicherheit verwendet werden können.

"Die Kapazität von Datenträgern wird immer größer, da die magnetischen Bereiche, auf denen die Informationen gespeichert werden, stetig verkleinert werden können. Indem wir im atomaren und molekularen Maßstab arbeiten, könnten wir diese Speichergeräte auf der Ebene steuern, die für eine sehr hohe Speicherdichte benötigt wird", fügt er hinzu.

Ergebnisse für die Forschung

Debuisschert ist fasziniert vom Zusammenspiel zwischen Atomphysik und Quantenmechanik und wie daraus praktische Anwendungen entstehen. "Wir befinden uns in einem industriellen Kontext, also müssen wir zeigen, dass am Ende der Forschung reale und vermarktbare Anwendungen stehen."

Die Tatsache, dass die DIADEMS-Mitglieder im Labor hergestellte Diamanten bei Zimmertemperatur einsetzen, bedeutet, dass die Technologie einfacher angewendet und vermarktet werden kann, sobald sie ausgereift ist. "Dennoch", so Debuisschert, "ist die finanzielle Unterstützung durch die EU im jetzigen Stadium unverzichtbar, da wir uns noch mitten in der Forschung befinden."

Die Vorteile der Arbeit auf EU-Ebene

Obwohl das Projekt ohne die Finanzierung durch die EU nicht existieren würde, ist für Debuisschert die Zusammenarbeit zwischen den Partnern aus Wissenschaft und Industrie ein besonders wichtiger Aspekt des EU-weiten Projekts. "Wir können direkt über alle neuen Ergebnisse aus den Laboratorien der EU informiert werden, was sehr viel Zeit spart, und der Ideenaustausch ist speziell auf europäische Projekte zugeschnitten", erklärt er.

"So bleiben wir den großen Konkurrenten aus dem Ausland gegenüber wettbewerbsfähig."

Das Projekt mit einer Laufzeit von vier Jahren startete im September 2013. Im Rahmen des Programms Future and Emerging Technologies (Künftige und neu entstehende Technologien) erhält es von der EU Fördergelder in Höhe von 6 Millionen Euro.

Link zur Projektwebsite
Horizon-Magazin

CORDIS | CORDIS - Top Storys
Weitere Informationen:
http://cordis.europa.eu/result/rcn/156015_de.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie

Speicherdauer von Qubits für Quantencomputer weiter verbessert

09.12.2016 | Physik Astronomie