Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DFG-Projekt zur Entwicklung neuer feuerfester keramischer Werkstoffe

18.08.2009
Bei dem neuen Schwerpunktprogramm "Fire" der Deutschen Forschungsgemeinschaft (DFG) zur Entwicklung einer völlig neuen Generation feuerfester Werkstoffe ist auch die Hochschule Bonn-Rhein-Sieg mit einem Forschungsprojekt beteiligt.

In dem Projekt von Professor Dr. Wolfgang Kollenberg geht es speziell um neue Verfahren zur Herstellung von Bauteilen aus neuen keramischen Werkstoffen, denn viele sogenannte Feuerfestanwendungen beruhen derzeit noch auf Produkten mit einem hohen Anteil Kohlenstoff.

Der Nachteil sind die damit verbundenen CO2-Emissionen. Diese Produkte durch neue Werkstoffe von derselben Qualität ohne den Nachteil der Emissionen zu ersetzen, ist ein Ziel des DFG-Schwerpunktprogramms.

Das Projekt von Professor Kollenberg am Fachbereich Angewandte Naturwissenschaften ist auf drei Jahre angelegt und wird mit etwa 300.000 Euro von der DFG gefördert. Darin enthalten sind Gerätekosten sowie eine Doktorandenstelle - die Promotion erfolgt in Zusammenarbeit mit der Universität Freiberg - und Stellen für Hilfskräfte.

Die Idee dabei ist es, ein Bauteil nicht nur aus einem homogenen Material herzustellen, sondern aufgrund besonderer Beanspruchungen mit Nanopartikeln zu kombinieren, unter Umständen auch nur an bestimmten Stellen in Abhängigkeit vom Bedarf, erklärt Professor Kollenberg. Diese lokale Variation des Gefüges ermöglicht es, Eigenschaften mehrerer Werkstoffe in einem Bauteil zu vereinen. Auf dem Prüfstand stehen feuerfeste Werkstoffe im Hinblick auf die Eigenschaften Abrieb, Temperaturwechsel, Korrosionsbeständigkeit oder Dauertemperaturbeständigkeit. Anwendungsgebiete sind beispielsweise der Motorenbau, die Stahl- und die Zementindustrie.

Doch noch ist es nicht soweit. Zunächst, so Doktorand Dominik Polsakiewicz, stellen sich eine Menge Fragen etwa nach der Manipulierbarkeit von Mikrostoffstrukturen oder nach sinnvollen Materialkombinationen.

Bei dem Gerät handelt es sich um einen 3D-Drucker. Er baut computergesteuert Werkstücke Schicht für Schicht aus Pulver und Bindemittel auf. Zuerst wird eine dünne Schicht Pulver - die Basis ist Aluminiumoxid - aufgetragen. Anschließend wird ein Bindemittel an den Stellen aufgesprüht, die stehen bleiben sollen. Dieser Prozess wird Schicht für Schicht wiederholt, bis ein dreidimensionales Objekt entsteht. Am Ende wird das nicht fixierte Pulver herausgeblasen. So lassen sich sehr filigrane und komplexe Formen drucken.

"Wir stellen aber keine fertigen Bauteile her, sondern Versuchskörper", so Kollenberg, "wir betreiben Grundlagenforschung." Kollenberg und Polsakiewicz sind überzeugt, dass sie bei ihrer Arbeit neue Möglichkeiten entdecken werden: "Das Projekt hat Potenzial für weitere drei Jahre."

Ansprechpartner:
Prof. Dr. Wolfgang Kollenberg
Fachbereich Angewandte Naturwissenschaften
Hochschule Bonn-Rhein-Sieg
Tel. 02226/16 98-10
E-Mail: wolfgang.kollenberg@h-brs.de

Eva Tritschler | idw
Weitere Informationen:
http://www.hochschule-bonn-rhein-sieg.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit