Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Deuterium aus dem Quantensieb

28.11.2012
Eine metallorganische Gerüstverbindung trennt Wasserstoff-Isotope effizienter als bisherige Methoden

Chemiker, Biologen und Physiker gelangen künftig möglicherweise leichter an das Mittel der Wahl, mit dem sie zahlreiche Forschungsfragen klären können.


Ein Sieb für Moleküle: Die Kristalle der metallorganischen Verbindung erscheinen unter dem Rasterelektronenmikroskop in mehr als 6000facher Vergrößerung.

© MPI für Intelligende Systeme


Aufbau der metallorganischen Gitterverbindung aus unterschiedlichen Perspektiven. Das orangene Gitternetz im Vordergrund zeigt das für Gasmoleküle zugängliche Volumen.

© Universität Augsburg / Advanced Materials

Ein Team von Wissenschaftlern des Max-Planck-Instituts für Intelligente Systeme in Stuttgart, der Jacobs University Bremen und der Universität Augsburg gelang es erstmals mit einer neuen Methode, Wasserstoff und sein schweres Isotop Deuterium effizienter als bisher zu trennen. Sie nutzen dazu eine metallorganische Gerüstverbindung als Quantensieb.

Deuterium dient als Hilfsmittel, um etwa die Struktur unbekannter Stoffe zu bestimmen. Mit ihm untersuchen Chemiker aber auch, wie Reaktionen ablaufen, an denen Wasserstoff beteiligt ist, und schaffen so die Basis, um die Umwandlung zu optimieren. Biologen analysieren mit Deuterium unter anderem Stoffwechselprozesse.

Deuterium ist der schwere Zwillingsbruder des Wasserstoffs, aber noch gut 20 Mal seltener als eineiige Zwillinge. Es macht gerade mal 0,15 Promille des natürlichen Wasserstoffs aus und ist doppelt so schwer wie das leichte Isotop. Chemisch unterscheiden sich die beiden Isotopen nicht: Sowohl Deuterium als auch gewöhnlicher Wasserstoff reagieren mit Sauerstoff zu Wasser. Seine doppelte Masse erlaubt es Forschern jedoch, mit Deuterium eine Spur zu legen, um chemische Reaktionen oder Stoffwechselprozesse aufzuklären. Sie schicken eine deuteriumhaltige Verbindung in die Prozesse und analysieren, in welchem Produkt der Umwandlung er sich wiederfindet. Und das ist nur eine der Aufgaben, die Deuterium in der Forschung erfüllt. Aber vielleicht wird es sogar einmal zu einem unerschöpflichen und klimaneutralen Brennstoff. Und zwar, wenn die Kernfusion so weit ausgereift sein wird, dass sie auf der Erde in dem Prozess, der auch in der Sonne abläuft, Energie erzeugen wird. Dabei entsteht im Gegensatz zur Kernspaltung sehr viel weniger radioaktiver Abfall.

Wie Forscher vom Max-Planck-Institut für Intelligente Systeme, der Jacobs University Bremen und der Universität Augsburg in der Zeitschrift „Advanced Materials“ berichten, können sie das im Wasserstoff enthaltene Deuterium nun schneller anreichern als mit den gängigen Methoden. Die Forscher stellten nämlich fest, dass eine bestimmte metallorganische Gerüstverbindung, kurz MOF für metalorganic framework, bei Temperaturen unter minus 200 Grad Celsius leichter Deuterium als gewöhnlichen Wasserstoff aufnimmt. Diese von Chemikern um Dirk Volkmer, Professor an der Universität Augsburg, synthetisierte Gerüstverbindung MFU-4 – ein Akronym für Metal-Organic Framework Ulm University-4 – besteht aus Zinkionen, die mit organischen Molekülen vernetzt sind und weist käfigartige Hohlräume auf, die durch besonders enge Öffnungen miteinander verbunden sind.

Bei tiefen Temperaturen werden Materialien mit engen Hohlräumen zu Quantensieben

Metallorganische Gerüstverbindungen werden in einem Baukastensystem erzeugt, in dem sich poröse Materialien für spezielle Anwendungen gezielt herstellen lassen. „Es gibt inzwischen Tausende derartiger Verbindungen, von denen die meisten allerdings den hohen technischen Anforderungen an die Stabilität nicht genügen“ sagt Dirk Volkmer. „Mit MFU-4 haben wir eine Familie von porösen Materialien entwickelt, die auch für industrielle Anwendungen attraktiv wäre.“

„Als wir diese Verbindung bei minus 223 Grad Celsius für wenige Minuten einem Gasgemisch aus gleichen Teilen Wasserstoff und Deuterium aussetzten, nahm sie fast siebenmal mehr Deuterium auf als Wasserstoff“, sagt Michael Hirscher, der die Experimente mit seinen Mitarbeitern am Max-Planck-Institut für Intelligente Systeme vornahm. Indem die Forscher die Gerüstverbindung anschließend über minus 200 Grad erwärmten, setzten sie die Isotope wieder frei. Um besser zu verstehen, warum das schwerere Deuterium schneller in die Poren eindringt als sein leichter Bruder, baten die Stuttgarter Wissenschaftler theoretische Physiker um Thomas Heine, Professor an der Jacobs University Bremen, um Hilfe.

So fand das Team heraus, dass die Gerüstverbindung die Wasserstoff-Isotope durch einen Mechanismus trennt, den Physiker als Quantensieben bezeichnen. Allerdings lassen sich die beiden Wasserstoffisotope nicht wie Sandkörner anhand ihrer Größe separieren, weil die Moleküle des einen so winzig sind wie die des anderen. Vielmehr sortiert das Quantensieb die Teilchen nach ihrer Masse. Das wäre in etwa so, als würde ein Kindersieb Sandkörner nicht nach ihrer Größe, sondern nach ihrer Farbe auslesen.

Wasserstoff tunnelt leichter, aber Deuterium besetzt die besten Startplätze
Zu Quantensieben werden Materialien bei sehr tiefen Temperaturen, wenn sie enge Hohlräume aufweisen. Dabei treten zwei Quanteneffekte auf. Zum einen ziehen sich die Öffnungen bei Temperaturen unter minus 200 Grad so weit zusammen, dass selbst die denkbar kleinen Wasserstoff-Moleküle nicht mehr durch sie hindurchströmen können, sondern durch die de facto geschlossene Öffnung tunneln müssen. Das können Teilchen nur unter Bedingungen, unter denen die Gesetze der Quantenphysik gelten.

„Eigentlich tunneln die leichten Wasserstoff-Moleküle sogar mit höherer Wahrscheinlichkeit“, sagt Thomas Heine. „Unsere Rechnungen zeigen jedoch, dass nicht die Wasserstoff-Moleküle, sondern die Deuterium-Moleküle direkt an den Öffnungen sitzen.“ Daher haben die Deuterium-Moleküle bessere Startbedingungen zum Tunneln und gelangen eher in die Hohlräume der Gerüstverbindung.

Dass Deuterium den besseren Startplatz ergattert, beruht wiederum auf einem Quanteneffekt: Wegen der Eigenarten der Quantenwelt gibt es selbst am absoluten Nullpunkt der Temperaturen keinen völligen Stillstand. Das würde nämlich bedeuten, dass Ort und Impuls, also die Geschwindigkeit der Teilchen, ganz genau feststehen. Dies verbieten aber die Gesetze der Quantenwelt, weil es in ihr keine absoluten Sicherheiten, sondern nur Wahrscheinlichkeiten gibt. Aus diesem Grund besitzen alle Teilchen eine Nullpunktsenergie, und die ist bei schwereren Teilchen kleiner als bei leichten. Da sich schwere Teilchen, bildlich gesprochen, also nicht so heftig bewegen wie leichte, haften sie bei tiefen Temperaturen besser auf Oberflächen. Das hat zur Folge, dass auch an den Öffnungen der metall-organischen Gerüstverbindungen mehr Deuterium- als Wasserstoff-Moleküle sitzen und eher in sie hineintunneln können.

Auch Helium-3 und Helium-4 könnten sich mit Quantensieben trennen lassen

„Damit haben wir erstmals experimentell gezeigt, dass Quantensieben eine sehr effektive Methode ist, um Gasgemische zu trennen und Deuterium zu gewinnen“, sagt Michael Hirscher. Bisherige Methoden, die etwa die unterschiedlichen Siedepunkte der beiden Isotope ausnutzen, reichern Deuterium pro Trennungszyklus gerade mal um das zweieinhalbfache an. Die neue Methode ist also zwei bis drei Mal so effektiv.

„Technische Trennprozesse wie das Quantensieben setzen voraus, dass sich poröse Materialien mit Hohlräumen einer gewünschten Größe gezielt herstellen lassen“, sagt Dirk Volkmer. „Genau diese Bedingung erfüllt die MFU-4-Familie.“ Testen ließen sich die Materialien nur, weil die Forscher um Michael Hirscher eine Apparatur konstruiert hatten, in der sie die gespeicherten Mengen unterschiedlicher Gase direkt mit einem Massenspektrometer analysieren konnten.

Mit diesem Instrument wollen sie nun untersuchen, ob sich andere metallorganische Gerüstverbindungen, deren Hohlräume und Öffnungen größer oder kleiner sind, vielleicht sogar besser als Quantensiebe für Deuterium eignen. „Wir wollen aber auch versuchen Helium-3 auf diese Weise anzureichern“, erklärt Michael Hirscher. Helium-3 ist der leichte Bruder von Helium-4, ist aber so selten, dass auf eine Million Teile Helium-4 nur 1,4 Teile Helium kommen. Vor allem in der Wissenschaft ist es aber als Kühlmittel begehrt. Außerdem könnte es ebenfalls als Brennstoff der Kernfusion dienen und würde dabei noch einmal deutlich weniger radioaktives Material produzieren als die Kernfusion mit Deuterium. „Ich erwarte, dass wir auch bei den Helium-Isotopen einen Trennungseffekt sehen werden“, sagt Michael Hirscher. „Ob es sich lohnen wird, Helium-3 auch technisch auf diese Weise zu gewinnen, ist damit natürlich noch nicht geklärt.“ Diese Frage ist einstweilen aber auch für Wasserstoff und seinen dicken Bruder Deuterium noch offen.

Ansprechpartner

Dr. Michael Hirscher
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-1808
E-Mail: hirscher@­is.mpg.de
Prof. Dr. Thomas Heine
Jacobs University Bremen gGmbH
Telefon: +49 421 200-3223
E-Mail: t.heine@­jacobs-university.de
Prof. Dr. Dirk Volkmer
Universität Augsburg
Telefon: +49 821 598-3006
E-Mail: dirk.volkmer@­physik.uni-augsburg.de
Originalpublikation
Julia Teufel, Hyunchul Oh, Michael Hirscher, Mohammad Wahiduzzaman, Lyuben Zhechkov, Agnieszka Kuc, Thomas Heine, Dmytro Denysenk und Dirk Volkmer
MFU-4 – A Metal-Organic Framework for Highly Effective H2/D2 Separation
Advanced Materials, Online-Veröffentlichung vom 8. November 2012; DOI: 10.1002/adma.201203383

Dr. Michael Hirscher | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6642650/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kleine Strukturen – große Wirkung
21.11.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Transparente Beschichtung für Alltagsanwendungen
20.11.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie