Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Superkräften von Superlegierungen auf der Spur

22.12.2015

FAU-Werkstoffwissenschaftlern bauen Turbinenwerkstoff Atom für Atom im Computer nach

Superlegierungen – metallische Werkstoffe, die aus Nickel und Aluminium sowie verschiedenen weiteren Elementen wie Rhenium zusammengesetzt sind – sind für die Herstellung von Turbinenschaufeln, etwa in einem Flugzeugtriebwerk, unverzichtbar.


Atomsondendaten zeigen, wo sich welche Atome innerhalb der Nickelbasis-Superlegierung befinden. So können die FAU-Forscher simulieren, wie sich die Superlegie

J.J. Möller, S. Neumeier, A. Prakash, E. Bitzek

Sie sorgen dafür, dass die Turbinen auch bei höchsten Temperaturen bis nahe an ihrem Schmelzpunkt stabil bleiben – bei den immensen Belastungen durch Fliehkräfte ein Muss. Werkstoffwissenschaftler arbeiten daher permanent daran, diese Superlegierungen weiter zu verbessern.

Forschern der FAU um Prof. Dr. Erik Bitzek ist es nun erstmals gelungen, die atomare Struktur einer Nickelbasis-Superlegierung so exakt im Computer nachzubauen, dass Simulationen tatsächlich die Verformungsprozesse in der realen Materialstruktur wiedergeben und erklären können. Bislang konnten Forscher immer nur mit idealisierten Strukturen im Computer arbeiten.

Die Erlanger Wissenschaftler können jetzt detailgetreu simulieren, wie sich bestimmte, linienhafte Kristalldefekte (Versetzungen) in der Nickelbasis-Superlegierung bewegen, wenn Kräfte auf die Turbinenschaufel einwirken, und so für die Verformung des Materials sorgen.

Um dieses Ziel zu erreichen, haben Bitzek und sein Team zunächst Daten genutzt, die ihre Kollegen vom Max-Planck-Institut für Eisenforschung mit Hilfe einer Atomsondenmessung ermittelt haben: Diese liefert 3D-Informationen über den atomaren Aufbau der Legierung, kann allerdings lediglich rund zwei Drittel der vorhandenen Atome lokalisieren.

Jedoch konnten die Forscher aus den so gewonnenen Daten mit einer neu am Lehrstuhl entwickelten Software namens nanoSCULPT atomare Modelle erzeugen, die nicht nur die exakte Beschaffenheit der so genannten Ausscheidungen – Teilchen mit anderer Kristallstruktur und Zusammensetzung, die in den Kristall eingebettet sind – wiedergeben, sondern auch, wie die Nickel- und Aluminiumatome innerhalb der Legierung verteilt sind.

So gelang es den Werkstoffwissenschaftlern, die im Experiment um die Ausscheidungen herum entstehenden Netzwerke von Versetzungen richtig abzubilden und die speziellen Versetzungsstrukturen, die zuvor ihre Forscherkollegen um Prof. Dr. Erdmann Spiecker (ebenfalls FAU) im hochauflösenden Transmissionselektronenmikroskop beobachtet hatten, wirklichkeitsgetreu zu reproduzieren.

Im nächsten Schritt simulierten Bitzek und sein Team auf den Höchstleistungsrechnern der Universität Erlangen-Nürnberg Zugversuche an diesen aus über 14 Millionen Atomen bestehenden Mikrostrukturen. Dabei zeigte sich erstmals detailliert auf atomarer Skala, wie die Ausscheidungen und das sie umgebende Versetzungsnetzwerk die Bewegung von Versetzungen behindern und so die Festigkeit des Materials erhöhen.

Diese Erkenntnisse können nun verwendet werden, um Superlegierungen weiterzuentwickeln, damit sie noch höheren Temperaturen standhalten können und so den Treibstoffverbrauch – und in der Folge den CO2-Ausstoß – von Triebwerken senken.

Insgesamt neun Arbeitsgruppen der Erlanger Werkstoffwissenschaftler arbeiten an diesem Ziel gemeinsam mit der Ruhr-Universität Bochum und weiteren Forschungseinrichtungen innerhalb des Sonderforschungsbereichs Transregio 103 „Vom Atom zur Turbinenschaufel“, der, wie kürzlich bekannt gegeben wurde, von der Deutschen Forschungsgemeinschaft für weitere vier Jahre mit 15 Millionen Euro gefördert wird.

Die Erkenntnisse der Erlanger Werkstoffwissenschaftler wurden in der Fachzeitschrift Acta Materialia veröffentlicht und gehören dort mittlerweile zu den Top 10 der am häufigsten gelesen Beiträge. Weiterhin hat die Materials Research Society die Studie jüngst in ihrem Bulletin aufgegriffen. Ein Video der Simulationen findet sich unter http://bit.do/superalloy.

Ansprechpartner:
Prof. Dr. Erik Bitzek
Tel.: 09131 85-27507
erik.bitzek@fau.de

Blandina Mangelkramer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics