Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Superkräften von Superlegierungen auf der Spur

22.12.2015

FAU-Werkstoffwissenschaftlern bauen Turbinenwerkstoff Atom für Atom im Computer nach

Superlegierungen – metallische Werkstoffe, die aus Nickel und Aluminium sowie verschiedenen weiteren Elementen wie Rhenium zusammengesetzt sind – sind für die Herstellung von Turbinenschaufeln, etwa in einem Flugzeugtriebwerk, unverzichtbar.


Atomsondendaten zeigen, wo sich welche Atome innerhalb der Nickelbasis-Superlegierung befinden. So können die FAU-Forscher simulieren, wie sich die Superlegie

J.J. Möller, S. Neumeier, A. Prakash, E. Bitzek

Sie sorgen dafür, dass die Turbinen auch bei höchsten Temperaturen bis nahe an ihrem Schmelzpunkt stabil bleiben – bei den immensen Belastungen durch Fliehkräfte ein Muss. Werkstoffwissenschaftler arbeiten daher permanent daran, diese Superlegierungen weiter zu verbessern.

Forschern der FAU um Prof. Dr. Erik Bitzek ist es nun erstmals gelungen, die atomare Struktur einer Nickelbasis-Superlegierung so exakt im Computer nachzubauen, dass Simulationen tatsächlich die Verformungsprozesse in der realen Materialstruktur wiedergeben und erklären können. Bislang konnten Forscher immer nur mit idealisierten Strukturen im Computer arbeiten.

Die Erlanger Wissenschaftler können jetzt detailgetreu simulieren, wie sich bestimmte, linienhafte Kristalldefekte (Versetzungen) in der Nickelbasis-Superlegierung bewegen, wenn Kräfte auf die Turbinenschaufel einwirken, und so für die Verformung des Materials sorgen.

Um dieses Ziel zu erreichen, haben Bitzek und sein Team zunächst Daten genutzt, die ihre Kollegen vom Max-Planck-Institut für Eisenforschung mit Hilfe einer Atomsondenmessung ermittelt haben: Diese liefert 3D-Informationen über den atomaren Aufbau der Legierung, kann allerdings lediglich rund zwei Drittel der vorhandenen Atome lokalisieren.

Jedoch konnten die Forscher aus den so gewonnenen Daten mit einer neu am Lehrstuhl entwickelten Software namens nanoSCULPT atomare Modelle erzeugen, die nicht nur die exakte Beschaffenheit der so genannten Ausscheidungen – Teilchen mit anderer Kristallstruktur und Zusammensetzung, die in den Kristall eingebettet sind – wiedergeben, sondern auch, wie die Nickel- und Aluminiumatome innerhalb der Legierung verteilt sind.

So gelang es den Werkstoffwissenschaftlern, die im Experiment um die Ausscheidungen herum entstehenden Netzwerke von Versetzungen richtig abzubilden und die speziellen Versetzungsstrukturen, die zuvor ihre Forscherkollegen um Prof. Dr. Erdmann Spiecker (ebenfalls FAU) im hochauflösenden Transmissionselektronenmikroskop beobachtet hatten, wirklichkeitsgetreu zu reproduzieren.

Im nächsten Schritt simulierten Bitzek und sein Team auf den Höchstleistungsrechnern der Universität Erlangen-Nürnberg Zugversuche an diesen aus über 14 Millionen Atomen bestehenden Mikrostrukturen. Dabei zeigte sich erstmals detailliert auf atomarer Skala, wie die Ausscheidungen und das sie umgebende Versetzungsnetzwerk die Bewegung von Versetzungen behindern und so die Festigkeit des Materials erhöhen.

Diese Erkenntnisse können nun verwendet werden, um Superlegierungen weiterzuentwickeln, damit sie noch höheren Temperaturen standhalten können und so den Treibstoffverbrauch – und in der Folge den CO2-Ausstoß – von Triebwerken senken.

Insgesamt neun Arbeitsgruppen der Erlanger Werkstoffwissenschaftler arbeiten an diesem Ziel gemeinsam mit der Ruhr-Universität Bochum und weiteren Forschungseinrichtungen innerhalb des Sonderforschungsbereichs Transregio 103 „Vom Atom zur Turbinenschaufel“, der, wie kürzlich bekannt gegeben wurde, von der Deutschen Forschungsgemeinschaft für weitere vier Jahre mit 15 Millionen Euro gefördert wird.

Die Erkenntnisse der Erlanger Werkstoffwissenschaftler wurden in der Fachzeitschrift Acta Materialia veröffentlicht und gehören dort mittlerweile zu den Top 10 der am häufigsten gelesen Beiträge. Weiterhin hat die Materials Research Society die Studie jüngst in ihrem Bulletin aufgegriffen. Ein Video der Simulationen findet sich unter http://bit.do/superalloy.

Ansprechpartner:
Prof. Dr. Erik Bitzek
Tel.: 09131 85-27507
erik.bitzek@fau.de

Blandina Mangelkramer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics