Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den perfekten Reifen berechnen

20.05.2015

Jülicher Forscher verbessern Theorie, um die Reibung von Gummireifen vorherzusagen

Den optimalen Reifen wünschen sich nicht nur Formel-1-Fahrer. Rutschsicher, abriebfest und langsam im Verschleiß – das sollen die Gummimischungen leisten. Gleichzeitig darf der Rollwiderstand aber nicht zu groß sein, um den Spritverbrauch niedrig zu halten.

Der Jülicher Forscher Dr. Bo Persson arbeitet seit gut 20 Jahren daran, das Phänomen der Reibung von Gummi theoretisch zu erklären. Im Fachmagazin "Journal of Chemical Physics" berichten er und seine Kollegen nun über einen weiteren Effekt, der dabei eine Rolle spielt.

"Bisher berücksichtigen Reifenhersteller bei Vorhersagen zur Reifenhaftung hauptsächlich einen Aspekt: die Viskoelastizität. Das ist die Verformung des Reifens, verursacht durch Unebenheiten des Straßenbelags", sagt Persson vom Jülicher Peter Grünberg Institut, Bereich Quanten-Theorie der Materialien (PGI-1/IAS-1), "aber diese Vorhersagen spiegeln nicht die Realität wider."

Persson hat daher in sein theoretisches Modell zur Gummireibung einen weiteren Aspekt mit einbezogen, die sogenannte Scherung. Sie wirkt dort, wo der Gummi direkten Kontakt mit der Oberfläche hat und beeinflusst ebenfalls die Reibung.

Auf molekularer Ebene können verschiedene Prozesse zu ihr beitragen: Gummimoleküle, die kurzfristig an der Oberfläche haften, harte Füllstoffe in der Gummimischung – zum Beispiel Ruß oder Silikate – die über die Oberfläche schleifen, aber auch Risse und Abnutzungen im Reifenmaterial.

"Wir haben zunächst die Bindung der Gummimoleküle berücksichtigt", sagt Persson, "dieser Prozess sollte aus unseren Erfahrungen den größten Einfluss bei der Scherung haben." Für drei Gummimischungen testeten die Forscher ihr erweitertes Rechenmodell: die typische Mischung eines Sommer-, eines Allwetter- und eines Winterreifens.

Kleine Blöcke dieser Materialien zogen sie über zwei verschiedene Arten von Asphalt und Sandpapier mit einer Geschwindigkeit von maximal einem Millimeter pro Sekunde. "Durch die langsame Bewegung haben wir ausgeschlossen, dass die Reibungswärme unser Ergebnis beeinflusst", sagt Persson. "Gummireibung ist sehr komplex, daher wollten wir die neue Theorie zunächst unter sehr einfachen Bedingungen testen."

Für verschiedene Zuggeschwindigkeiten und Temperaturen beschreibt das neue Modell die experimentell beobachtete Reibung sehr gut. "Das stützt unsere Annahme, dass die kurzzeitige Haftung der Gummimoleküle auf molekularer Ebene entscheidend zur Scherkraft beiträgt", sagt Persson.

Bei Kontakt des Gummiblocks mit der Oberfläche haften die zunächst verknäulten Gummimoleküle dort. Wird der Gummiblock weitergezogen, dehnen sich die Moleküle ähnlich einem Gummiband, das man an einem Ende festhält – bis sie schließlich wieder abreißen, zu einem Knäuel zusammenschnurren und erneut haften können.

Dieser Mechanismus wird auch bestätig durch die Abhängigkeit der Scherung von Temperatur und Zuggeschwindigkeit: Bei hoher Temperatur oder kleiner Zuggeschwindigkeit haften die Gummimoleküle kaum – der Scherbeitrag zur Reibung ist gering.

Gleiches gilt für sehr niedrige Temperaturen oder hohe Zuggeschwindigkeit. Der Grund dafür ist die thermische Bewegung der Gummimoleküle, also ihre mikroskopische Beweglichkeit in der nach außen hin festen Gummimischung.

Bei hohen Temperaturen bewegen sich die Moleküle zu stark, um an der Oberfläche zu haften, bei niedrigen Temperaturen bewegen sie sich zu langsam. In beiden Fällen ist die Zeit, in der sie Kontakt mit der Oberfläche haben, zu kurz, um anzuhaften.

"Natürlich gelten unsere Ergebnisse zunächst für idealisierte Bedingungen, also trockene, saubere Oberflächen", sagt Persson. Bei nassen Straßen sollte die Scherkraft beispielsweise nur eine geringe Rolle spielen, da der Wasserfilm den Kontakt der Gummimoleküle mit der Asphaltoberfläche verhindert.

"Aber das Modell zeigt den Weg, welche Faktoren bei der Vorhersage der perfekten Gummimischung eine Rolle spielen können und was auf molekularer Ebene bei der Reibung passiert."

Originalpublikation:

B. Lorenz, Y.R. Oh, S. K. Nam, S. H. Jeon, B. N. J. Persson, Rubber friction on Road Surfaces, J. Chem.Phys., 142, 194701 (2015), http://dx.doi.org/10.1063/1.4919221

Weitere Informationen:

Pressemitteilung des American Institute of Physics (in Englisch)

Peter Grünberg Institut, Bereich Quanten-Theorie der Materialien (PGI-1/IAS-1)

Ansprechpartner:

Dr. Bo Persson, Telefon: 02461 61-5143,
E-Mail: b.persson@fz-juelich.de

Pressekontakt:

Dr. Barbara Schunk, Telefon: 02461 61-8031
E-Mail: b.schunk@fz-juelich.de

Annette Stettien, Telefon: 02461 61-2388
E-Mail: a.stettien@fz-juelich.de

www.fz-juelich.de

Dr. Barbara Schunk | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Transparente Beschichtung für Alltagsanwendungen
20.11.2017 | Karlsruher Institut für Technologie

nachricht Der gestapelte Farbsensor
17.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie