Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Datenverarbeitung: Zinn für schnellere Chips

28.10.2013
Weltweit wird intensiv an einem Material geforscht, das eine Revolution in der Datenverarbeitung verspricht. Physiker haben es jetzt erstmals aus einem ganz einfachen Baustoff hergestellt. Die Fachwelt ist verblüfft.

Daten immer schneller verarbeiten und speichern, noch kleinere und leistungsfähigere Chips bauen: An diesen Zielen arbeiten weltweit viele Forschungsgruppen.


Topologischer Isolator: In einer Schicht aus Zinn trennen sich Elektronen von ganz allein nach der Ausrichtung ihres Spins, der im Bild durch Pfeile symbolisiert ist.
(Grafik: Markus R. Scholz/Arjun Kartha – http://arjunkarthaphotography.com)

Seit einigen Jahren steht dabei eine besondere Materialklasse im Mittelpunkt, die so genannten topologischen Isolatoren. In ihnen trennen sich die Elektronen von ganz alleine nach ihrer jeweiligen Spinausrichtung, völlig ohne den Einsatz elektrischer oder magnetischer Felder.

„Diese Eigenschaft ist von weitreichender Bedeutung“, erklärt Professor Ralph Claessen vom Physikalischen Institut der Universität Würzburg: „Wenn man topologische Isolatoren mit elektrischen Kontakten versieht, kann man daraus Schaltkreise bauen, die mit der Spinrichtung kodierte Informationen weiterleiten.“ Diese neue Art der Datenübermittlung beruht nicht mehr auf dem Transport elektrischer Ladungen. Sie ist darum deutlich schneller und zuverlässiger.

Warum Zinn einen Fortschritt bedeutet

Den Würzburger Physikern ist es jetzt erstmals gelungen, topologische Isolatoren aus Zinn herzustellen, also aus einem simplen und leicht verfügbaren Material. „Das vereinfacht die Herstellung erheblich, denn bislang gab es solche Isolatoren nur aus komplizierten chemischen Verbindungen oder umweltschädlichen Materialien“, sagt Claessens Mitarbeiter Jörg Schäfer.

Ihren Forschungserfolg stellen die Physiker in der Zeitschrift „Physical Review Letters“ vor. Er ist ihnen in einer internationalen Kooperation mit Arbeitsgruppen aus der Schweiz und den USA sowie vom Forschungszentrum Jülich gelungen. Am Würzburger Physikalischen Institut befasst sich auch Professor Laurens Molenkamp erfolgreich mit topologischen Isolatoren: Er hat die ungewöhnlichen Eigenschaften dieser Materialklasse – motiviert durch theoretische Vorhersagen – vor wenigen Jahren erstmals experimentell bestätigt.

Wie der topologische Isolator entstand

In den neuen Experimenten am Lehrstuhl von Ralph Claessen wurden nun – unter der Leitung von Jörg Schäfer – dünne Zinn-Schichten besonders langsam auf einen Halbleiterträger aufgedampft. Dabei bildete sich ein geordnetes Kristallgitter aus Zinn-Atomen, das mit dem von Diamant identisch ist.

„In den experimentellen Untersuchungen hat sich dann herausgestellt, dass diese Schicht die gesuchten ungewöhnlichen Eigenschaften aufweist: Die Spins der Elektronen sind in zwei Richtungen mit genau umgekehrt stehenden Magnetnadeln sortiert, und die beiden Gruppen bewegen sich in entgegengesetzten Richtungen“, so Schäfer. Nachgewiesen wurde das mit spinaufgelöster Photoemission.

„Damit haben wir erstmals gezeigt, dass das Phänomen der automatischen Spintrennung auch in einem simplen, elementaren Kristallgitter existiert“, freut sich Schäfer. Dadurch sieht er die Herstellung brauchbarer topologischer Isolatoren in greifbare Nähe gerückt. Unterfüttert sind die neuen Experimente von theoretischen Überlegungen, die der Würzburger Physikprofessor Werner Hanke gemeinsam mit Kollegen in Jülich angestellt hat.

Was die Physiker als nächstes tun

Da die Spintrennung im Zinn-Gitter an sich nun zuverlässig erzeugt werden kann, wollen die Physiker als nächstes das Leitfähigkeitsverhalten von kompletten Strukturen mit elektrischen Kontakten erforschen und optimieren.

Erste Demonstrationen des Spintransports in Schichten mit topologischen Materialien haben bereits bei Temperaturen weit unterhalb des Gefrierpunktes funktioniert. Für die praktische Anwendung sind somit noch eine Reihe technologischer Fragen zu klären, darunter die Realisierung von Schaltungen, die ohne Kühlung auskommen. Zu diesem Zweck arbeiten die Würzburger Physiker mit ihren Fachkenntnissen in Materialherstellung und -untersuchung jetzt besonders intensiv zusammen.

“Elemental Topological Insulator with Tunable Fermi Level: Strained alpha-Sn on InSb(001)”, A. Barfuss, L. Dudy, M. R. Scholz, H. Roth, P. Höpfner, C. Blumenstein, G. Landolt, J. H. Dil, N. C. Plumb, M. Radovic, A. Bostwick, E. Rotenberg, A. Fleszar, G. Bihlmayer, D. Wortmann, G. Li, W. Hanke, R. Claessen, and J. Schäfer, Physical Review Letters 111, 157205 (October 2013), DOI: 10.1103/PhysRevLett.111.157205

Kontakt

PD Dr. Jörg Schäfer, Physikalisches Institut, Universität Würzburg, joerg.schaefer@physik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue „Arbeitskluft“ für Polizei und Feuerwehr soll Einsätze und Umwelt schützen
23.01.2018 | Deutsche Bundesstiftung Umwelt (DBU)

nachricht Komplexe Parkettmuster, außergewöhnliche Materialien
23.01.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics