Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Fließverhalten im Nanometerbereich: was Tropfen stoppt und Nanobläschen am Leben erhält

12.04.2016

Dieses Bild kennt jeder: ein Regentropfen fließt über die Fensterscheibe. An einer bestimmten Stelle stoppt er seinen Lauf, ein zweiter Regentropfen rinnt hinzu und gemeinsam vereint fließen beide die Scheibe weiter hinab. Kleinste Unebenheiten oder Verschmutzungen auf der Fensterscheibe scheinen den Lauf der Regentropfen aufzuhalten. Wäre die Oberfläche vollkommen eben und chemisch rein, dann würden Regentropfen ungehindert fließen können. Oberflächendefekte, wie kleine Erhebungen, Vertiefungen oder auch chemische Verunreinigungen halten den Flüssigkeitstropfen auf.
Dies sind Phänomene aus dem Alltag, die jeder kennt und mit bloßem Auge beobachten kann.

Der Trend in Wissenschaft und Technik geht jedoch seit Jahren zu immer feiner strukturierten Fest-körperoberflächen, die für vielfältige Anwendungen genutzt werden können. Typische Strukturab-messungen liegen hierbei im Mikro- oder sogar im Nanometerbereich (ein Nanometer ist ein milli-onstel Millimeter).


Das theoretische Modell in bildlicher Darstellung: eine Flüssigkeitsfront schiebt sich über eine Verunreinigung (oben) oder eine Erhebung (unten).

Max-Planck-Institut für Intelligente Systeme, Stuttgart

Wie wird nun aber das Fließverhalten eines Tropfens durch derart feine Oberflächenstrukturen beeinflusst, oder wie wird der Transport von winzigen Flüssigkeitsmengen auf extrem schmalen Bahnen durch darauf befindliche winzige Oberflächendefekte behindert?

Die fraglichen Oberflächendefekte sind dann nicht mehr viel größer als die Moleküle oder Atome, welche die Flüssigkeit oder die Festkörperoberfläche aufbauen. Mit dem Auge lässt sich der Einfluss derart kleiner Oberflächendefekte auf den Flüssigkeitstransport nicht mehr studieren.

Selbst mit modernsten experimentellen Methoden ist es derzeit nicht möglich, den Flüssigkeitstransport über derart kleine Oberflächendefekte zu beobachten und zu untersuchen. Theoretische Methoden und Modellrechnungen überwinden diese Herausforderungen.

Die Forschungsabteilung „Theorie inhomogener kondensierter Materie“, unter Leitung von Prof. Dr. Siegfried Dietrich am Max-Planck-Institut für Intelligente Systeme in Stuttgart, hat ein Modell entwickelt und numerisch analysiert, welches die auf der Nanometerskala relevante molekulare Struktur einbezieht. Mit diesem theoretischen Modell kann der Widerstand, den wenige Nanometer kleine Unebenheiten oder Verunreinigungen dem Flüssigkeitstransport entgegensetzen, berechnet werden.

Die Ergebnisse veröffentlichten Dr. Alberto Giacomello und Dr. Lothar Schimmele gemeinsam mit Professor Dr. Siegfried Dietrich kürzlich in der Zeitschrift „Proceedings of the National Academy of Sciences“ (PNAS).

In dieser international angesehenen, multidisziplinären Zeitschrift werden nur Arbeiten von außerordentlicher wissenschaftlicher Bedeutung publiziert. Außerdem müssen diese von übergreifendem Interesse auch für weitere Fachgruppen sein, wie in diesem Fall z.B. für Wissenschaftler aus den Bereichen Mikrofluidik, Nanostrukturphysik oder Oberflächenchemie.

Das Computerprogramm hierfür hat Lothar Schimmele über mehrere Jahre hinweg entwickelt. Alberto Giacomello hat es anlässlich dieser Arbeit zusätzlich mit einem neuartigen Algorithmus kombiniert. Das Programm ermöglicht zu berechnen, wie sich Flüssigkeiten unter dem Einfluss äußerer Kräfte, die z.B. durch begrenzende Wände entstehen, verhalten.

Für die nun vorgestellten Untersuchungen haben Alberto Giacomello und Lothar Schimmele ein einfaches Modell gewählt: zwei ebene Wände, die parallel zueinander stehen und einen Kanal von wenigen Nanometern Durchmesser bilden. Auf der unteren Wand dieses engen Kanals trifft die Flüssigkeit auf ein Hindernis, wie z.B. eine Verschmutzung oder eine Unebenheit. Die an diesem einfachen System gewonnenen Ergebnisse lassen sich dann mit Hilfe theoretischer Überlegungen auf andere Geometrien übertragen.

„Bisher ist die Fachwelt davon ausgegangen, dass ein Hindernis, das kleiner als ein Nanometer ist, zu schwach sei, um eine Flüssigkeit aufzuhalten. Dies konnten wir mit unseren Berechnungen widerlegen“, erklärt Dr. Lothar Schimmele.

Die Ergebnisse dieser Untersuchungen können auch zur Erklärung eines weiteren Phänomens herangezogen werden. Winzige Gasbläschen, die sich z.B. bei der Katalyse oder Elektrolyse an Oberflächen bilden, haben oft eine unerwartet lange Lebensdauer. Diese Gasbläschen verringern jedoch die Effektivität von Elektrolyseprozessen und stören diese.

Die Verankerung eines Gasbläschen an der Oberfläche verhindert das beständige Anwachsen des Drucks im Bläschen, wodurch es stabilisiert wird. Die Ergebnisse der Forschungsgruppe Dietrich können die Verankerung erklären: Unebenheiten auf der Oberfläche, die nur wenige Nanometer klein sind, sind hierfür verantwortlich.

Auch für weitere praktische Anwendungen können die in der Arbeit gewonnenen Erkenntnisse von Bedeutung sein. Hier ist zum Beispiel die Nutzung von Flüssigkeitsbrücken für den künstlichen Zusammenbau von Nanostrukturen zu erwähnen. Mit Hilfe dieser Brücken werden Nanoteilchen positioniert und orientiert. Auch hier spielt die Verankerung an Unebenheiten eine wichtige Rolle.

Die Wissenschaftler haben sich bereits weitere Ziele gesteckt: sie wollen unterschiedliche Uneben-heiten auf Oberflächen untersuchen, um herauszufinden welchen Einfluss die jeweilige Materialzusammensetzung oder geometrische Form einer Nanometer kleinen Unebenheit auf das Aufhalten eines Flüssigkeitstropfens hat.

Die Forscher interessieren sich auch für kollektive Phänomene. „Als nächstes wollen wir untersu-chen, welchen Einfluss mehrere Defekte haben, die als Gruppe nahe beieinander liegen. Außerdem interessiert uns, wie sich das Fließverhalten von Flüssigkeiten bei Hindernissen verhält, die durch Vertiefungen auf Oberflächen entstehen, anstelle von den bisher untersuchten Erhebungen“, erklärt Dr. Lothar Schimmele.

Weitere Informationen:

http://www.is.mpg.de/de/dietrich

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten