Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computergestützte Partnervermittlung für Formgedächtnis-Metalle

01.07.2010
RUB-Forscher entdecken Gedächtnis-Metall mit unerreichter funktioneller Stabilität / Titelstory in „Advanced Functional Materials“

Eine neue Formgedächtnis-Legierung mit bisher unerreichter funktioneller Stabilität haben Forscher des Instituts für Werkstoffe der Ruhr-Universität gemeinsam mit Kollegen aus den USA und Japan entwickelt. Sie stützten sich dabei auf eine theoretische Vorhersage und nutzten kombinatorische Methoden der Materialforschung, sog. Dünnschicht-Materialbibliotheken, um die optimale Zusammensetzung zu entwickeln. Das Ergebnis besteht aus vier Komponenten: Titan, Nickel, Kupfer und Palladium.

Von dem neuen Material versprechen sich die Forscher Bauteile mit stabilem Formgedächtniseffekt und langer Lebensdauer, z.B. für Anwendungen in der Medizintechnik wie Stents. Sie berichten in der aktuellen Ausgabe des renommierten Journals „Advanced Functional Materials“, das ihren Beitrag als Titelstory auswählte.

Formgedächtnislegierungen

Formgedächtnismaterialien kehren nach einer mechanischen Verformung bei Erwärmung in ihren Ausgangszustand zurück (Formgedächtniseffekt), oder ermöglichen bis zu ca. 10 % vollständig „elastische“ Dehnungen (Superelastizität). Die erstaunlichen Effekte basieren auf einer umkehrbaren martensitischen Phasenumwandlung: Die Kristallstruktur verändert sich in Abhängigkeit von der Temperatur oder Spannung. Allerdings gehen diese Veränderungen nicht spurlos am Material vorbei. Die wiederholten Verformungen erzeugen Defekte, die sich auf Dauer summieren, so dass das die Formgedächtniseigenschaft nachlässt. „Die Defekte entstehen an der Grenze zwischen der Hochtemperatur- und der Tieftemperaturphase während der Umwandlung und resultieren aus einer Fehlpassung der Kristallstrukturen“, erklärt Robert Zarnetta vom Materials Research Department der RUB.

Vier passende Partner

Theoretische Berechnungen der Forschungspartner aus den USA hatten ergeben, dass sich diese Fehlpassung durch die Auswahl von Metallen mit kompatiblen Hoch- und Tieftemperatur-Kristallgitterstrukturen reduzieren lassen müsste. Als optimale Partner für eine solche Legierung wurden die vier Metalle Titan, Nickel, Kupfer und Palladium (Ti-Ni-Cu-Pd) berechnet. Die erfolgreiche experimentelle „Partnervermittlung“ wurde durch den Einsatz von Dünnschicht-Materialbibliotheken möglich, mit deren Hilfe sehr große Zusammensetzungsbereiche in aus vier Elementen bestehenden (quaternären) Legierungssystemen mit Hochdurchsatz-Charakterisierungsmethoden untersucht werden können. „Die spezielle Zusammensetzung der neuen Legierung mit konventionellen experimentellen Methoden zu finden und zu optimieren wäre extrem schwierig gewesen“, erklärt Prof. Dr. Alfred Ludwig, Inhaber des Lehrstuhls Werkstoffe der Mikrotechnik.

Kompatible Kristallgitter machen stabil

Neben der Entdeckung spezieller Legierungszusammensetzungen konnten die Forscher in den Dünnschichten auch die zugrundeliegenden Zusammensetzungs-Struktur-Eigenschaftsbeziehungen ermitteln, und nutzten diese, um die Ergebnisse der Dünnschichten auf Massivmaterialien zu übertragen. So gelang zum ersten Mal der Nachweis des grundlegenden Zusammenhangs zwischen dem kristallinen Aufbau von Formgedächtnismaterialien und deren funktioneller Stabilität. „Eine verbesserte Kompatibilität der Kristallgitter der Hochtemperatur- und Tieftemperaturphase führt zu verbesserter funktioneller Stabilität“, fasst Robert Zarnetta das Ergebnis zusammen. „Dieser Zusammenhang konnte nur durch den Brückenschlag zwischen der kombinatorischen Entwicklung von Formgedächtnis-Dünnschichten und der konventionellen Materialentwicklung nachgewiesen werden“.

Sonderforschungsbereich und Research Department

Die Untersuchungen wurden, aufbauend auf der Arbeit im Sonderforschungsbereich (SFB) 459 „Formgedächtnistechnik“, am Lehrstuhl „Werkstoffe der Mikrotechnik“ (Prof. Dr.-Ing. Alfred Ludwig, Institut für Werkstoffe) in Kooperation mit dem Lehrstuhl Werkstoffwissenschaft (Prof. Dr.-Ing. Gunther Eggeler, Institut für Werkstoffe) im Materials Research Department der RUB durchgeführt.

Titelaufnahme

Zarnetta, R., Takahashi, R., Young, M. L., Furuya, Y., Thienhaus, S., Savan, A., Maass, B., Rahim, M., Frenzel, J., Brunken, H., Chu, Y. S., Srivastava, V., James, R. D., Takeuchi, I., Eggeler, G. & Ludwig, A.: Identification of quaternary shape memory alloys with near zero thermal hysteresis and unprecedented functional stability, In: Advanced Functional Materials 2010, 20, 1917-1923), doi: 10.1002/adfm.200902336

Weitere Informationen

Prof. Dr.-Ing. Alfred Ludwig, Werkstoffe der Mikrotechnik, Institut für Werkstoffe, Fakultät Maschinenbau, Ruhr-Universität Bochum, Tel. 0234/32-27492, alfred.ludwig@rub.de, http://www.rub.de/wdm und http://www.rub.de/sfb459

Robert Zarnetta, Materials Research Department, Ruhr-Universität Bochum, Tel. 0234/32-25929, robert.zarnetta@rub.de, http://www.rd.rub.de/is3

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscher spinnen künstliche Seide aus Kuhmolke
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie