Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computergestützte Partnervermittlung für Formgedächtnis-Metalle

01.07.2010
RUB-Forscher entdecken Gedächtnis-Metall mit unerreichter funktioneller Stabilität / Titelstory in „Advanced Functional Materials“

Eine neue Formgedächtnis-Legierung mit bisher unerreichter funktioneller Stabilität haben Forscher des Instituts für Werkstoffe der Ruhr-Universität gemeinsam mit Kollegen aus den USA und Japan entwickelt. Sie stützten sich dabei auf eine theoretische Vorhersage und nutzten kombinatorische Methoden der Materialforschung, sog. Dünnschicht-Materialbibliotheken, um die optimale Zusammensetzung zu entwickeln. Das Ergebnis besteht aus vier Komponenten: Titan, Nickel, Kupfer und Palladium.

Von dem neuen Material versprechen sich die Forscher Bauteile mit stabilem Formgedächtniseffekt und langer Lebensdauer, z.B. für Anwendungen in der Medizintechnik wie Stents. Sie berichten in der aktuellen Ausgabe des renommierten Journals „Advanced Functional Materials“, das ihren Beitrag als Titelstory auswählte.

Formgedächtnislegierungen

Formgedächtnismaterialien kehren nach einer mechanischen Verformung bei Erwärmung in ihren Ausgangszustand zurück (Formgedächtniseffekt), oder ermöglichen bis zu ca. 10 % vollständig „elastische“ Dehnungen (Superelastizität). Die erstaunlichen Effekte basieren auf einer umkehrbaren martensitischen Phasenumwandlung: Die Kristallstruktur verändert sich in Abhängigkeit von der Temperatur oder Spannung. Allerdings gehen diese Veränderungen nicht spurlos am Material vorbei. Die wiederholten Verformungen erzeugen Defekte, die sich auf Dauer summieren, so dass das die Formgedächtniseigenschaft nachlässt. „Die Defekte entstehen an der Grenze zwischen der Hochtemperatur- und der Tieftemperaturphase während der Umwandlung und resultieren aus einer Fehlpassung der Kristallstrukturen“, erklärt Robert Zarnetta vom Materials Research Department der RUB.

Vier passende Partner

Theoretische Berechnungen der Forschungspartner aus den USA hatten ergeben, dass sich diese Fehlpassung durch die Auswahl von Metallen mit kompatiblen Hoch- und Tieftemperatur-Kristallgitterstrukturen reduzieren lassen müsste. Als optimale Partner für eine solche Legierung wurden die vier Metalle Titan, Nickel, Kupfer und Palladium (Ti-Ni-Cu-Pd) berechnet. Die erfolgreiche experimentelle „Partnervermittlung“ wurde durch den Einsatz von Dünnschicht-Materialbibliotheken möglich, mit deren Hilfe sehr große Zusammensetzungsbereiche in aus vier Elementen bestehenden (quaternären) Legierungssystemen mit Hochdurchsatz-Charakterisierungsmethoden untersucht werden können. „Die spezielle Zusammensetzung der neuen Legierung mit konventionellen experimentellen Methoden zu finden und zu optimieren wäre extrem schwierig gewesen“, erklärt Prof. Dr. Alfred Ludwig, Inhaber des Lehrstuhls Werkstoffe der Mikrotechnik.

Kompatible Kristallgitter machen stabil

Neben der Entdeckung spezieller Legierungszusammensetzungen konnten die Forscher in den Dünnschichten auch die zugrundeliegenden Zusammensetzungs-Struktur-Eigenschaftsbeziehungen ermitteln, und nutzten diese, um die Ergebnisse der Dünnschichten auf Massivmaterialien zu übertragen. So gelang zum ersten Mal der Nachweis des grundlegenden Zusammenhangs zwischen dem kristallinen Aufbau von Formgedächtnismaterialien und deren funktioneller Stabilität. „Eine verbesserte Kompatibilität der Kristallgitter der Hochtemperatur- und Tieftemperaturphase führt zu verbesserter funktioneller Stabilität“, fasst Robert Zarnetta das Ergebnis zusammen. „Dieser Zusammenhang konnte nur durch den Brückenschlag zwischen der kombinatorischen Entwicklung von Formgedächtnis-Dünnschichten und der konventionellen Materialentwicklung nachgewiesen werden“.

Sonderforschungsbereich und Research Department

Die Untersuchungen wurden, aufbauend auf der Arbeit im Sonderforschungsbereich (SFB) 459 „Formgedächtnistechnik“, am Lehrstuhl „Werkstoffe der Mikrotechnik“ (Prof. Dr.-Ing. Alfred Ludwig, Institut für Werkstoffe) in Kooperation mit dem Lehrstuhl Werkstoffwissenschaft (Prof. Dr.-Ing. Gunther Eggeler, Institut für Werkstoffe) im Materials Research Department der RUB durchgeführt.

Titelaufnahme

Zarnetta, R., Takahashi, R., Young, M. L., Furuya, Y., Thienhaus, S., Savan, A., Maass, B., Rahim, M., Frenzel, J., Brunken, H., Chu, Y. S., Srivastava, V., James, R. D., Takeuchi, I., Eggeler, G. & Ludwig, A.: Identification of quaternary shape memory alloys with near zero thermal hysteresis and unprecedented functional stability, In: Advanced Functional Materials 2010, 20, 1917-1923), doi: 10.1002/adfm.200902336

Weitere Informationen

Prof. Dr.-Ing. Alfred Ludwig, Werkstoffe der Mikrotechnik, Institut für Werkstoffe, Fakultät Maschinenbau, Ruhr-Universität Bochum, Tel. 0234/32-27492, alfred.ludwig@rub.de, http://www.rub.de/wdm und http://www.rub.de/sfb459

Robert Zarnetta, Materials Research Department, Ruhr-Universität Bochum, Tel. 0234/32-25929, robert.zarnetta@rub.de, http://www.rd.rub.de/is3

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

nachricht Ein Herz aus Spinnenseide
11.08.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie