Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemiker stellen Variante der „Wunderfolie“ vor

14.09.2012
Internationales Forschungsjournal titelt mit neuem Bielefelder Graphenmolekül

Auf dem Titelbild des renommierten Wissenschaftsjournals „Chemical Communications" (ChemComm) präsentieren Professor Dr. Dietmar Kuck von der Fakultät für Chemie und sein Mitarbeiter Ehsan Ullah Mughal ein Modell ihrer jüngsten Entwicklung.


Das neue Bielefelder Graphen-Molekül schmückt den Titel des renommierten Wissenschafts-journals „Chemical Communications" (ChemComm).

Die Forscher arbeiten an Varianten der „Wunderfolie“ Graphen, dem dünnsten und stärksten Material, das je von Menschen hergestellt wurde. Ihnen ist es gelungen, eine neue Graphen-Verbindung herzustellen, die nicht flach, sondern dreidimensional ist. Das neue Molekül aus Bielefeld hat eine Wölbung, die bisher unbekannte Reaktionen ermöglichen soll. Das ChemComm-Titelbild zeigt eine Montage des gewölbten Moleküls über der Universität Bielefeld und dem Teutoburger Wald. Das Titelbild und der Artikel erscheinen am heutigen Freitag, 14. September.

Graphen nennt man Riesenmoleküle aus Kohlenstoff-Atomen, die ein flaches und praktisch unendlich großes Netz aus Sechsecken bilden. Es ist äußerst dünn, weil es nur die Höhe eines Kohlenstoffatoms hat. Von Graphen erwarten sich Forscher weltweit technisch revolutionierende Eigenschaften, weil es extrem zugfest ist und Strom und Wärme sehr gut leitet. 2010 ging für die Grundlagenforschung an Graphen ein Nobelpreis an die zwei Physiker Andre Geim und Konstantin Novoselov von der Universität Manchester.

Graphen ist – ebenso wie eine Bienenwabe – flach, weil es ausschließlich aus Sechsecken besteht. Bauelemente, die mehr oder weniger Ecken haben, würden das Graphen verformen – so dass das Netzwerk wie eine Kuppel oder ein Sattel aus der Fläche heraus gezwungen wird. Wenn man es schafft, ein Graphen-Netz zu bauen, das neben den sechseckigen Bausteinen auch solche mit fünf oder sieben Ecken enthält, dann erhält man ein Riesenmolekül mit einer oder mehreren Wölbungen. Dieses Wissen haben sich der Diplom-Chemiker Ehsan Ullah Mughal und Professor Dr. Dietmar Kuck zunutze gemacht. Mughal hat verschiedene kleine Kohlenstoff-Bausteine in fünf aufeinander folgenden Stufen miteinander reagieren lassen, so dass schließlich ein Graphen-Netz herauskam, das zum großen Teil flach ist, aber als Besonderheit eine Wölbung besitzt.
„Entscheidend ist dabei, dass es gelungen ist, weltweit zum ersten Mal ein Siebeneck aus Kohlenstoff-Atomen innerhalb eines Graphen-Moleküls zu erzeugen“, sagt Professor Dr. Dietmar Kuck, der die Experimente von Mughal geleitet hat. Eine unerlässliche „Zutat“ des Graphen-Moleküls ist ein Baustein, dessen Chemie Kuck und sein Team seit 1984 entwickeln. Dieses Molekül heißt „Tribenzotriquinacen“ und bringt gleich drei Fünfringe auf einmal ein. Mughal hat diesen Baustein mit einem flachen Graphen-Ausschnitt vereinigt, um so insgesamt ein Kohlenstoff-Netz mit der Wölbung herzustellen.

In dem neuartigen Bielefelder Graphenartigen Molekül bilden 58 Kohlenstoff-Atome insgesamt 15 Sechsecke, drei Fünfecke und ein Siebeneck. Weitere Kohlenwasserstoff-Reste hängen als Reste daran und sorgen für gute Löslichkeit.

Kuck sagt, die erfolgreiche Erzeugung des neuen Moleküls zeige Wege zu ähnlichen, noch größeren Strukturen, die Potenzial für neue Anwendungen in der Technik finden sollten. Solche Materialien könnten künftig zum Beispiel bei der Herstellung von Flüssigkristallanzeigen (LCDs) in Flachbildschirmen, Monitoren und Handys genutzt werden. „Die Entwicklung dieser neuartigen Moleküle ist bei uns aber Teil der Grundlagenforschung“, sagt Kuck. „Wir erforschen, ob und auf welchen Wegen ein experimenteller Zugang zu diesen neuartigen Materialien erreicht werden kann, und veröffentlichen die dazugehörigen Verfahren, so dass aufgrund unserer Ergebnisse weltweit auch andere Forscherinnen und Forscher zur Entwicklung von Technologien der Zukunft beitragen können.“
Das Graphen-Projekt von Kuck und Mughal wird von der Deutschen Forschungsgemeinschaft (DFG) gefördert. „Chemical Communications“ gehört zu den weltweit führenden Fachzeitschriften für Originalveröffentlichungen aus allen Gebieten der Chemischen Grundlagenforschung. Das Magazin wird von der Royal Society of Chemistry (RSC) in Großbritannien herausgegeben.

Originalveröffentlichung:
Merging tribenzotriquinacene with hexa-peri-hexabenzocoronene: a cycloheptatriene unit generated by Scholl reaction. Ehsan Ullah Mughal and Dietmar Kuck*, Chemical Communica-tions, 14.9.2012, dx.doi.org/10.1039/c2cc34245f

Kontakt:
Prof. Dr. Dietmar Kuck, Universität Bielefeld
Fakultät für Chemie / Organische Chemie I
Telefon: 0521 106-2060
E-Mail: dietmar.kuck@uni-bielefeld.de

Ingo Lohuis | idw
Weitere Informationen:
http://www.uni-bielefeld.de
http://www.uni-bielefeld.de/chemie/arbeitsbereiche/oc1/DK

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik