Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chaos hält warm: Bayreuther Forscher erhöhen die Wärmeisolation durch gezielte Unordnung

03.04.2018

Pulver eignen sich hervorragend für die Wärmedämmung, wenn darin ein Durcheinander von unterschiedlich großen Nanopartikeln herrscht. Dies hat eine Forschungsgruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth jetzt herausgefunden. Die Wissenschaftler haben entdeckt, wie die Wärmeleitfähigkeit von Pulvern durch Ordnung und Unordnung ihrer Bestandteile beeinflusst wird. In der Zeitschrift „Advanced Materials“ stellen sie ihre neuen Erkenntnisse vor.

Ausgangspunkt der Forschungsarbeiten waren photonische Kristalle, die man in der Natur von verschiedenen Insektenarten her kennt. Sie verleihen beispielsweise den Flügeln von Schmetterlingen ihr buntes, schillerndes Aussehen. Solche Kristalle lassen sich im Labor durch polymere Nanopartikel leicht nachbauen. Sie besitzen dabei eine feine, regelmäßige und stabile Struktur. Diese wohlgeordnete Struktur bewirkt, dass Wärme nur schwer durch die Kristalle hindurchfließen kann. Die Wärmeleitfähigkeit ist gering.


Computersimulationen der Wärmeausbreitung. Links: die Wärme kann die geordnete Struktur leicht durchdringen. Rechts: chaotische Partikelpackungen behindern die Wärmeausbreitung.

Abbildungen: Markus Retsch


Teamarbeit in der Physikalischen Chemie an der Universität Bayreuth: Doktorand Fabian Nutz M.Sc., Alexandra Philipp M.Sc. und Prof. Dr. Markus Retsch.

Foto: Christian Wißler

Die Bayreuther Forscher haben nun herausgefunden, dass aus solchen Nanopartikeln Materialien hergestellt werden können, die eine noch viel geringere Wärmeleitfähigkeit aufweisen. Bei diesen Materialien handelt es sich um pulverförmige Mischungen: Anstelle der kristallinen Ordnung herrscht jetzt Unordnung, und auch das attraktive Farbenspiel ist dahin.

Während im Innern der photonischen Kristalle jeder Partikel von genau zwölf Partikeln in seiner direkten Nachbarschaft umgeben ist, ist die Anzahl der direkten Nachbarn in der Mischung durchweg uneinheitlich. Deshalb muss die Wärme Umwege in Kauf nehmen und hat es umso schwerer, die Mischung zu durchdringen. Von der warmen zur kalten Seite hin abzufließen, ist für die Wärme in einer chaotischen Struktur noch schwieriger als im wohlgeordneten Kristall.

Um diese Zusammenhänge vollständig aufzuklären, haben Prof. Dr. Markus Retsch und sein Team Experimente im Labor mit Simulationen am Rechner kombiniert. So konnten sie im Detail ermitteln, wie sich die Zusammensetzung der Partikelmischung auf den Durchfluss von Wärme auswirkt. Der höchste Isolationseffekt wird erreicht, wenn wenige große Partikel mit sehr vielen kleineren Partikeln vermischt werden. Neben diesem Mischungsverhältnis spielt auch der Größenunterschied zwischen den beiden Partikelsorten eine entscheidende Rolle.

„Es ist gar nicht so einfach, Unordnung reproduzierbar herzustellen und durch Simulationen zu beschreiben“, erläutert Prof. Retsch die Herausforderungen dieser Studie. „Nur weil wir Nanopartikel vermischt haben, deren Verhalten wir sehr gut kontrollieren können, war es möglich, unsere experimentellen Ergebnisse mit Computersimulationen zu vergleichen.“ Auf diesem Weg gewannen die Bayreuther Forscher detaillierte Einblicke in die Ausbreitung von Wärme in ungeordneten Materialien.

Diese Erkenntnisse sind für viele Anwendungen von großer Bedeutung, insbesondere auf dem Gebiet der Wärmedämmung. So könnte beispielsweise die Wärmeisolationsfähigkeit von Pulverschüttungen verbessert werden. Aber auch für technische Anwendungen, die umgekehrt auf eine rasche und gut kontrollierbare Ableitung von Wärme angewiesen sind, ergeben sich wertvolle Anhaltspunkte. Dies gilt beispielsweise für die Optimierung industrieller Sinterverfahren, bei denen winzige Pulverteilchen verschmolzen werden. Hier kommt es darauf an, die Temperatur an den Schmelzpunkten genau zu regulieren, was durch die verbesserte Ableitung von Wärme möglich ist.

Veröffentlichung:

Fabian A. Nutz, Alexandra Philipp, Bernd A. F. Kopera, Martin Dulle, Markus Retsch, Low Thermal Conductivity through Dense Particle Packings with Optimum Disorder, Advanced Materials (2018), 1704910,
DOI: 10.1002/adma.201704910

Vgl. dazu auch: F. A. Nutz, P. Ruckdeschel and M. Retsch, Polystyrene Colloidal Crystals: Interface Controlled Thermal Conductivity in an Open-Porous Mesoparticle Superstructure, J. Colloid Interface Sci. (2015) 457, 96-101,
DOI: 10.1016/j.jcis.2015.06.022

Kontakt:

Prof. Dr. Markus Retsch
Lichtenberg-Juniorprofessur für Polymere Systeme
Universität Bayreuth
Telefon: +49 (0) 921 55-3920
E-Mail: markus.retsch@uni-bayreuth.de
http://www.retsch.uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics