Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bugwellen, Falten und Fließen: Den Vorboten des Verschleißes von Metalloberflächen auf der Spur

16.12.2014

Ein Wissenschaftler-Team vom Fraunhofer IWM in Freiburg zeigt, welche Mechanismen in Reibungsprozessen an Metalloberflächen wirken noch bevor der tatsächliche Verschleiß entsteht. Die Erkenntnisse werden in der aktuellen Ausgabe der Physical Review Applied vorgestellt. Solche Mechanismen zu verstehen ist Voraussetzung um Reibung und Verschleiß zu reduzieren.

Viele wissenschaftliche Anstrengungen zielen darauf ab, den Verschleiß in metallbasierten Reibungssystemen zu minimieren. Sie bewegen sich allerdings hauptsächlich auf der phänomenologischen Ebene. Um zu einer verschleißarmen Metalloberfläche zu gelangen, ist es jedoch notwendig, die bei der Reibung ablaufenden Prozesse auf atomarer Ebene grundlegend zu verstehen.


Aufgeworfener Span einer polykristallinen Kupferoberfläche nach dem Kratzen mit einer harten Spitze: Simulation (oben), Experiment (unten)

© Fraunhofer IWM

In einer groß angelegten Werkstoffsimulation ist es einem Team von Wissenschaftlern um Prof. Dr. Michael Moseler und Prof. Dr. Peter Gumbsch vom Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg gelungen, auf der Nanoskala sichtbar zu machen, welche Mechanismen im Reibungsprozess an einer polykristallinen Metalloberfläche wirken noch bevor der tatsächliche Verschleiß entsteht. Denn um Reibung und Verschleiß zu minimieren, muss man genau an diesen Mechanismen ansetzen. Experimente der Gruppe um Martin Dienwiebel vom des Mikrotribologiezentrums µTC bestätigen die Ergebnisse der Simulation. Die Wissenschaftler stellen ihre Erkenntnisse in der aktuellen Ausgabe der Physical Review Applied vor.

Ebenfalls an dem Projekt beteiligt waren das Institut für Angewandte Materialien am KIT Karlsruhe, die Robert Bosch GmbH und das Institut für Physik der Universität Freiburg. Zu ihrer Simulation inspiriert hat die Forscher eine Versuchsanordnung des Center for Materials Processing and Tribology an der Purdue University, West Lafayette, Indiana [N.K. Sundaram et al., Phys. Rev. Lett. 109, 1065001 (2012)].

Diese kratzten mit einer harten Spitze über eine Kupferoberfläche und beobachteten, dass die Spitze eine Bugwelle aus Kupfer vor sich her trieb, die in sich wiederum Falten warf. Es zeigte sich, dass das Metall in einen plastischen Deformationsfluss geriet, der, wie bei Flüssigkeiten, laminar oder turbulent aussehen kann. An dieser Stelle gingen die Forscher des Fraunhofer IWM noch einen Schritt weiter. Sie wollten das plastische Fließen auf atomarer Ebene genau ergründen und kamen zu überraschenden Ergebnissen.

Der Kornorientierung im Kristall kommt eine wichtige Rolle zu

In ihrer auf 15 Millionen Atomen basierenden Simulation stellte das Fraunhofer IWM den Versuch der Amerikaner virtuell auf der Nanoskala nach. »Auf der experimentellen Ebene wurde auf der Suche nach Erklärungen schnell eine Analogie zur Kelvin-Helmholtz-Instabilität hergestellt«, sagt Moseler, dieses hydrodynamische Erklärungsmodell sei aber nach ihren Ergebnissen nicht mehr schlüssig.

Vielmehr zeigte sich in der Simulation, dass die unterschiedliche Orientierung der Körner in der polykristallinen Struktur des Metalls für die Faltungen und Verwirbelungen verantwortlich ist. Die Simulation macht die Körner einzeln sichtbar und belegt, dass es Körner gibt, die, je nach Orientierung, dem abrasiven Druck leicht nachgeben und andere, die sich sperren. »Die Falten entstehen deshalb immer an den Korngrenzen«, erklärt Moseler. Zudem wird erkennbar, dass die Körner zum einen unterschiedlich leicht verformbar sind und sich auch zu größeren Körnern vereinigen können.

Faltung und zusätzliche Verunreinigungen im Material führen zu lamellaren Verschleißpartikeln

Indem die Wissenschaftler die Atomschichten an der Metalloberfläche unterschiedlich einfärbten, konnten sie sichtbar machen, dass durch die Scherdynamik Atome von der Oberfläche tief in das Material eindringen. In einem zweiten Schritt ließen die Forscher die Spitze, entsprechend der eigentlichen Reibungsdynamik, simulativ über den entstehenden Span zurückfahren. Die zuvor entstandenen Falten legten sich nun lamellar auf das Material.

Interessant ist hier: Durch diesen Vorgang werden Verunreinigungen an der Metalloberfläche, zum Beispiel Oxide, zwischen den Lamellen in das Material eingeschlossen. »Man kann sich das wie einen Blätterteig vorstellen«, meint Moseler. Die Verunreinigungen machen das Metall instabil und liefern die Erklärung dafür, dass im Verschleißprozess lamellare Verschleißpartikel entstehen. »Zuvor ging man von einer Materialermüdung aus«, sagt Moseler.

»Wir haben gezeigt, dass verschiedene Körner an der Oberfläche unterschiedlich reagieren«, sagt Peter Gumbsch und fügt hinzu »In unseren weiteren Forschungen werden wir mit Blick auf mögliche Anwendungen, das Augenmerk darauf richten, wie die Kornorientierungen ideal einzustellen sind, um die Faltenbildung, die den Verschleiß verursacht, im Ansatz zu ersticken.« Möglichkeiten lägen hier in der mechanischen Oberflächenbearbeitung des Metalls und in der Beeinflussung der Korngrenzen durch gezielte Dotierung. Die Simulation des Fraunhofer IWM basiert auf Kupfer, ist aber auf viele andere Metalle übertragbar. »Aufbauend auf unseren Erkenntnissen könnten für die Entwicklungsingenieure Designrichtlinien entwickelt werden, die es ermöglichen, die Kornstruktur tribologisch beanspruchter Oberflächen gemäß den mechanischen Erfordernissen ganz präzise einzustellen«, so Gumbsch.

Referenz:
Nils Beckmann, Pedro A. Romero, DominikLinsler, Martin Dienwiebel, Ulrich Stolz, Michael Moseler, Peter Gumbsch, Origins of folding instabilities on polycrystalline metal surfaces, Phys. Rev. Applied 2, 064004 (2014)

Weitere Informationen:

https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.2.064004 - Link zum Artikel
http://www.iwm.fraunhofer.de/presse-veranstaltungen-publikationen-preise/details... - Link zur Pressemitteilung

Thomas Götz | Fraunhofer-Institut für Werkstoffmechanik IWM

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie