Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Blick unter magnetische Oberflächen

01.10.2013
SPEELS-Messungen liefern auch Informationen über magnetische Eigenschaften unter Oberflächen von Materialien, die für die Spintronik interessant sind

Oberflächliche Betrachtungen helfen selten weiter – das hat sich auch ein Team des Max-Planck-Instituts für Mikrostrukturphysik in Halle, der Martin-Luther-Universität Halle-Wittenberg sowie der Universität Leipzig zu Herzen genommen:


SPEELS liefert Informationen aus der Tiefe eines Materials: Spinpolarisierte Elektronen (rot) treffen von links oben auf die Oberfläche von Eisen, das auf einer nichtmagnetischen Irridium-Unterlage aufgetragen ist. Die Elektronen werden gestreut, regen dabei Spinwellen (Magnonen) an und verlassen die Oberfläche mit entgegengesetztem Spin (rot). Die Energie der Spinwellen ist vereinfacht gesprochen desto höher, je stärker die magnetische Austauschwirkung zwischen den Atomen. Diese nimmt unter der Oberfläche ab und ist an der Grenze zwischen Eisen und Irridium am niedrigsten.

© MPI für Mikrostrukturphysik

Die Wissenschaftler erforschen Kombinationen aus magnetischen und nichtmagnetischen Materialien, aus denen Bauelemente für die Spintronik hergestellt werden können – eine vielversprechende Variante der Elektronik, die besonders schnelle und effiziente Datenspeicher ermöglicht, da sie sowohl die Ladung als auch den Eigendrehimpuls („Spin“) von Elektronen ausnutzt.

Wie die Forscher aus Halle und Leipzig jetzt zeigen, liefert die Untersuchungsmethode „SPEELS“, mit der sich die magnetischen Eigenschaften von Materialien untersuchen lässt, anders als bisher angedacht nicht nur Informationen über die Oberflächen magnetischer Strukturen liefert. An einem mit einer dünnen Eisenschicht bedeckten Iridium-Kristall weisen sie vielmehr nach, dass zum SPEELS-Signal nicht nur die Oberfläche beiträgt, also die Grenze zwischen Eisen und Vakuum, sondern auch die tiefer liegende Grenzfläche zwischen Eisen und Iridium

Die wirklich interessante Information liegt oft unter der Oberfläche verborgen. Für Archäologen ist das trivial. Aber auch in der Mikrostrukturphysik hat dieser Satz seine Berechtigung. Zum Beispiel bei dünnen Schichten oder Nanostrukturen eines ferromagnetischen Materials auf einem nichtmagnetischen Untergrund; solche Strukturen könnten sich für Bauelemente der Spintronik eignen. Das Verhalten eines solchen mikrostrukturierten magnetischen Bauelements wird vielfach nicht nur durch die Oberflächeneigenschaften der Struktur bestimmt, sondern auch durch die Wechselwirkungen, an der tiefer liegenden Grenzfläche zwischen magnetischem und nichtmagnetischem Material.

Allerdings wurde bislang meist nur die Oberfläche einer magnetischen Struktur untersucht. Als experimentelle Methode nutzen Physiker dafür eine Methode namens SPEELS („spin polarized electron energy loss spectoscopy“). Dabei wird eine Probe mit spin-polarisierten Elektronen bestrahlt, also mit Elektronen, deren Spin in eine ganz bestimmte Richtung zeigt. Diese Elektronen werden an den Atomen der magnetischen Struktur gestreut und regen darin eine Spinwelle (ein Magnon) an. Der Spin der Elektronen, die schließlich von der Probe wieder abgestrahlt werden, zeigt in die entgegengesetzte Richtung.

Alle Elementarmagnete eines Materials tragen zu Magnonen bei

Indem Wissenschaftler die eingestrahlten und die gestreuten Elektronen vergleichen, können sie die Eigenschaften der Magnonen ermitteln und somit den Magnetismus der Struktur untersuchen. Genau das sei bislang nur für die Oberfläche möglich – dachten die Forscher: Da Elektronen schätzungsweise nur einige wenige Atomlagen in das bestrahlte Material eindringen, so wurde argumentiert, regten sie auch nur Oberflächen-Magnonen an. Nur die magnetischen Momente der Oberflächenatome seien also an der Spinwelle beteiligt. Wie sollte man da Informationen aus der tiefer liegenden Grenzschicht erhalten?

Genau diese Frage beantworten jetzt die Forscher um Khalil Zakeri und Jürgen Kirschner vom Max-Planck-Institut für Mikrostukturphysik in Halle. „Ein Magnon ist eine kollektive Anregung aller magnetischen Momente in dem Material, alle Elementarmagnete tragen dazu bei. Man darf die Interpretation der Messungen daher nicht auf Oberflächen-Magnonen beschränken“, gibt Khalil Zakeri zu bedenken. Er und seine Mitarbeiter haben das an einer sechs bis neun Atomlagen dicken Eisenschicht demonstriert, die sie auf nicht-magnetisches Iridium aufgebracht hatten.

Ein Magnon macht sich in einem SPEEL-Spektrum bemerkbar als Spitze oder zumindest Erhöhung. „So haben wir zunächst einmal die Energien aller Magnonen bestimmt“, erläutert Zakeri. „Von dem Magnon mit der niedrigsten Energie hatten wir schon vermutet, dass es einer Spinwelle entspricht, die sich im wesentlichen an der Grenzfläche zwischen Eisen und Iridium befindet.“

Der Vergleich zwischen Theorie und Experiment belegt den Tiefenblick

Um die Vermutung in Gewissheit zu verwandeln, verglichen sie die Messungen mit ab-initio-Berechnungen, die ihre Kollegen Arthur Ernst, Leonid Sandratskii und Pawel Buczek von der Theorie-Abteilung des Max-Planck-Instituts für Mikrostrukturphysik und von der Universität Leipzig angestellt haben, also mit Simulationen, die an keine Messwerte angepasst werden und in denen lediglich Naturkonstanten benutzt werden. Der Vergleich zwischen berechneten und gemessenen Energien der Magnonen belegte tatsächlich, dass die SPEELS auch in die Tiefe eine Materials blickt, weil die Rechnungen die Spinwelle niedrigster Energie an der Grenze zwischen Eisen und Iridium verorteten.

Das Ergebnis lässt sich auch anschaulich erklären: Die Energie, die in einer Spinwelle (einem Magnon) steckt, entspricht – vereinfacht gesprochen – der Stärke der Austauschwechselwirkung, die die magnetischen Momente aneinander koppelt. Dementsprechend befindet sich das Magnon mit der geringsten Energie im Wesentlichen an der Grenzfläche zwischen Eisen und Iridium, also dort, wo magnetische und nicht-magnetische Atome zusammentreffen und die magnetische Wechselwirkung im Vergleich zur Oberfläche abgeschwächt ist. Indem die Forscher aus Halle und Leipzig gezeigt haben, dass sie anhand von SPEELS-Messungen auch unter die Oberfläche schauen können, haben sie die Spektroskopie an magnetischen Strukturen und damit möglicherweise die Entwicklung von Bauelementen für die Spintronik ein großes Stück voran gebracht.

Ansprechpartner

Dr. Khalil Zakeri
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Telefon: +49 345 5582-749
E-Mail: zakeri@­mpi-halle.de
Dr. Arthur Ernst
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Telefon: +49 345 5582-666
E-Mail: aernst@­mpi-halle.de
Prof. Dr. Jürgen Kirschner
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Telefon: +49 345 5582-655
Fax: +49 345 5582-566
E-Mail: sekrki@­mpi-halle.mpg.de
Originalpublikation
Khalil Zakeri, Tzu-Hung Chuang, Arthur Ernst, Leonid Sandratskii, Pawel Buczek, Huajun Qin, Yu Zhang und Jürgen Kirschner
Direct probing of the exchange interaction at buried interfaces
22. September 2013 DOI: 10.1038/NNANO.2013.188

Dr. Khalil Zakeri | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7539241/speels_magnetisch_magnon

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten