Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bleifrei rechnen

17.12.2012
Eigentlich ist das giftige Blei-Zirkonium-Titanat (PZT) seit 2006 in Europa verboten. Doch weil es bisher keine Alternativen mit vergleichbar guten Eigenschaften gibt, darf das Material noch immer verwendet werden.
Es findet sich z.B. als nichtflüchtiges Speichermaterial in Computern und Einspritzsystemen von Autos. Wissenschaftler des IKZ haben nun ferroelektrische Materialien entwickelt, die das PZT in einigen Anwendungsbereichen ersetzen könnten.

„Eigentlich komme ich von den klassischen Halbleitern“, erklärt Dr. Jutta Schwarzkopf vom Leibniz-Institut für Kristallzüchtung (IKZ), „da ist die Welt übersichtlicher“. In ihrer jetzigen Forschung nutze sie ein viel größeres Spektrum des Periodensystems der Elemente, womit sich mehr Möglichkeiten bieten, Materialeigenschaften gezielt zu beeinflussen.

Das Natrium-Niobat ist eigentlich farblos. Die Färbung entsteht durch das Substrat – lila: NdGaO3 (Neodym-Gallat), weiß: SrTiO3 (Strontium-Titanat), gelb: DyScO3 (Dysprosium-Scandat)

Foto: IKZ

Mit Natrium-Niobat, einem an sich antiferroelektrischem Material, ist es ihrer Gruppe nun gelungen, bleifreie Schichten abzuscheiden, die ferroelektrische Eigenschaften aufweisen und vielleicht einmal in Zukunft das PZT aus Computern und Sensoren ersetzen könnten. Erreicht hat sie dies, indem sie das Material in Schichten gezüchtet hat, in die sie Verspannungen eingebaut hat. Bislang wurden Alkali-Niobate, zu denen das Natrium-Niobat gehört, kaum in Schichten hergestellt, da Alkalimetalle wie Natrium und Kalium sehr flüchtig und somit schwierig zu handhaben sind.

Natrium-Niobat zeigt im unverspannten Zustand keine ferroelektrischen Eigenschaften. Spannend wird das Material aber, wenn das Substrat, auf das die Schichten aufwachsen, eine etwas größere oder kleinere Gitterstruktur als das Natrium-Niobat aufweist. Bei einer kleineren Gitterstruktur des Substrates wird das Natrium-Niobat zusammengepresst, dadurch dehnt sich die Gitterzelle nach oben aus. Es kommt zu einer Verschiebung der positiven und negativen Ladungen und zu einer Polarisierung aus der Ebenen der Schicht hinaus.

Man spricht von einer kompressiven Verspannung. Bei der tensilen Verspannung ist die Gitterstruktur des Substrats etwas größer als die des Natrium-Niobats. Das Gitter wird auseinandergezogen, die Polarisation geschieht nun innerhalb der Ebene. Die Richtung der Polarisation entscheidet über die ferroelektrischen Eigenschaften des Materials. „Wir können mit dieser Verspannung spielen und erhalten so genau die Eigenschaften, die das Material haben soll“, erklärt Schwarzkopf. Dieses Arbeitsgebiet wird als „Strain Engineering“ bezeichnet. Die dafür verwendeten Substrate kommen z.T. auch aus dem IKZ, wo sie in der Gruppe von Hr. Uecker gezüchtet werden.

Ferroelektrische Materialien werden für nichtflüchtige Speichermedien eingesetzt – wenn der Stecker gezogen wird, sollen die Informationen schließlich nicht verloren gehen. Auch in Touchscreens, Sensoren und Mobilfunkgeräten kommen sie zum Einsatz.

Mit den Materialien kann man auch ganz neue Anwendungsfelder vorantreiben, etwa das „Energy Harvesting“. Werden nur kleine Energiemengen für mobile Geräte wie Sensoren oder Sender benötigt, kann man diese Energie zum Beispiel durch Schwingungen aus Bewegung gewinnen. Ein kleines Bauteil in der Schuhsohle könnte so eine Batterie ersetzen und kleine Energiemengen könnten völlig autark hergestellt werden. Ein weiteres Anwendungsgebiet sind „Surface Acoustic Waves“ (SAW) für Hochfrequenz-Bauteile.

Für diese Bereiche könnte nicht nur das Natrium-Niobat sondern auch andere Alkali-Niobate wie das Kalium-Niobat oder Mischkristalle aus beiden Komponenten eingesetzt werden, was ebenfalls seit kurzem untersucht wird
Derzeit sucht Jutta Schwarzkopf nach einem Industriepartner, damit wir in Zukunft nicht nur bleifrei fahren, sondern auch bleifrei rechnen können.

Kontakt:
Leibniz-Institut für Kristallzüchtung (IKZ)
Dr. Jutta Schwarzkopf
jutta.schwarzkopf@ikz-berlin.de
Tel.: (030) 6392-3053

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.ikz-berlin.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Hochreines Quarzglas von Heraeus ermöglicht Entdeckung von Gravitationswellen
12.02.2016 | Heraeus Holding GmbH

nachricht „LAVA“ kann Implantate verbessern
05.02.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen 100 Jahre nach Einsteins Vorhersage entdeckt

LIGO öffnet mit der Beobachtung kollidierender schwarzer Löcher ein neues Fenster zum Universum / Entscheidende Beiträge von Forschern der Max-Planck-Gesellschaft und der Leibniz Universität Hannover

Zum ersten Mal haben Wissenschaftler Kräuselungen der Raumzeit, sogenannte Gravitationswellen, beobachtet, die – ausgelöst von einem Großereignis im fernen...

Im Focus: Messkampagne POLSTRACC: Starker Ozonabbau über der Arktis möglich

Die arktische Stratosphäre war in diesem Winter bisher außergewöhnlich kalt, damit sind alle Voraussetzungen für das Auftreten eines starken Ozonabbaus in den nächsten Wochen gegeben. Diesen Schluss legen erste Ergebnisse der vom Karlsruher Institut für Technologie (KIT) koordinierten Messkampagne POLSTRACC nahe, die seit Ende 2015 in der Arktis läuft. Eine wesentliche Rolle spielen dabei vertikal ausgedehnte polare Stratosphärenwolken, die zuletzt weite Bereiche der Arktis bedeckten: An ihrer Oberfläche finden chemische Reaktionen statt, welche den Ozonabbau beschleunigen. Diese Wolken haben die Klimaforscher nun ungewöhnlicherweise bis in den untersten Bereich der Stratosphäre beobachtet.

„Weite Bereiche der Arktis waren über einen Zeitraum von mehreren Wochen von polaren Stratosphärenwolken zwischen etwa 14 und 26 Kilometern Höhe bedeckt –...

Im Focus: AIDS-Impfstoffproduktion in Algen

Pflanzen und Mikroorganismen werden vielfältig zur Medikamentenproduktion genutzt. Die Produktion solcher Biopharmazeutika in Pflanzen nennt man auch „Molecular Pharming“. Sie ist ein stetig wachsendes Feld der Pflanzenbiotechnologie. Hauptorganismen sind vor allem Hefe und Nutzpflanzen, wie Mais und Kartoffel – Pflanzen mit einem hohen Pflege- und Platzbedarf. Forscher um Prof. Ralph Bock am Max-Planck-Institut für Molekulare Pflanzenphysiologie in Potsdam wollen mit Hilfe von Algen ein ressourcenschonenderes System für die Herstellung von Medikamenten und Impfstoffen verfügbar machen. Die Praxistauglichkeit untersuchten sie an einem potentiellen AIDS-Impfstoff.

Die Produktion von Arzneimitteln in Pflanzen und Mikroorganismen ist nicht neu. Bereits 1982 gelang es, durch den Einsatz gentechnischer Methoden, Bakterien so...

Im Focus: Einzeller mit Durchblick: Wie Bakterien „sehen“

Ein 300 Jahre altes Rätsel der Biologie ist geknackt. Wie eine internationale Forschergruppe aus Deutschland, Großbritannien und Portugal herausgefunden hat, nutzen Cyanobakterien – weltweit vorkommende mikroskopisch kleine Einzeller – das Funktionsprinzip des Linsenauges, um Licht wahrzunehmen und sich darauf zuzubewegen. Der Schlüssel zu des Rätsels Lösung war eine Idee aus Karlsruhe: Jan Gerrit Korvink, Professor am KIT und Leiter des Instituts für Mikrostrukturtechnik (IMT) am KIT, nutzte Siliziumplatten und UV-Licht, um den Brechungsindex der Einzeller zu messen.

 

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

SUMA-Kongress 2016 – Die offene Web-Gesellschaft 4.0

12.02.2016 | Veranstaltungen

Career Center deutscher Hochschulen tagen an der Europa-Universität Viadrina

12.02.2016 | Veranstaltungen

Frauen in der digitalen Arbeitswelt: Gestaltung für die IT-Branche und das Ingenieurswesen

11.02.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ultraschnelle Kontrolle von Spinströmen durch Laserlicht

12.02.2016 | Physik Astronomie

SCHOTT stellt auf der Photonics West zukunftsweisende Lösungen für die Optik vor

12.02.2016 | Messenachrichten

Große Sauerstoffquellen im Erdinneren

12.02.2016 | Geowissenschaften