Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomimetischer Zahnersatz

28.09.2015

ETH-Materialforschende entwickeln ein Verfahren, mit dem sie die komplexe Feinstruktur von biologischen Verbundmaterialien wie Zähnen oder Muschelschalen nachahmen. Sie können damit künstlich Materialien erschaffen, die genauso hart oder zäh sind wie ihre natürlichen Vorbilder.

In der Natur gibt es kaum langlebigere und zähere Strukturen als Zähne oder Muschelschalen. Das Geheimnis dieser Materialien ist ihre besondere Feinstruktur: Sie sind aus verschiedenen Lagen aufgebaut, in denen unzählige Mikroplättchen in jeweils identischer Ausrichtung aneinander gefügt sind.


Querschnitt des künstlichen Zahns unter dem Elektronenmikroskop (Falschfarbenbild): Im Zahnschmelz sind Keramikplättchen vertikal angeordnet, im Zahnbein schräg bis horizontal.

Bild: Hortense Le Ferrand / ETH Zürich

Zwar gibt es bereits Methoden, mit denen Materialforscher Perlmutt imitieren konnten. Nach wie vor aber war es eine Herausforderung, ein Material zu erschaffen, das die gesamte Muschelschale nachahmt und vergleichbare Eigenschaften und die komplexe Struktur erreicht.

Nun hat eine Gruppe von Forschenden um André Studart, Professor für komplexe Materialien, ein neues Verfahren entwickelt, welches das natürliche Vorbild beinahe perfekt imitiert. So konnten die Wissenschaftler ein mehrschichtiges, zähes Material herstellen, das auf dem Bauprinzip von Zähnen oder Muschelschalen beruht und den Vergleich damit nicht zu scheuen braucht. Den ETH-Forschenden ist es erstmals gelungen, in einem einzigen Stück verschiedene Lagen mit unterschiedlich orientierten Mikroplättchen zu erhalten.

Ihr Verfahren nannten die ETH-Forschenden «magnetisch unterstützten Schlickerguss» (englisch: Magnetically assisted slip casting, MASC). «Das Schöne an unserem neuen Verfahren ist, dass es auf einer 100-jährigen Technik aufbaut und diese mit moderner Materialforschung kombiniert», sagt Studarts Doktorand Tobias Niebel, Mitautor einer Studie, die soeben in der Fachzeitschrift «Nature Materials» erschienen ist.

100 Jahre alte Technik neu genutzt

Und so funktioniert MASC: Erst erstellen die Forscher von einem beliebigen Objekt einen Gipsabdruck, der als Gussform dient. In diese Form giessen sie eine Suspension, die magnetisierte Keramikplättchen wie zum Beispiel Aluminiumoxid-Plättchen enthält. Die Poren der Gipsform saugen den flüssigen Anteil der Suspension langsam auf. Dadurch verfestigt sich das Material von aussen nach innen und wird hart.

Einen schichtartigen Aufbau erhalten die Wissenschaftler, indem sie während des Gussvorgangs ein Magnetfeld anlegen, dessen Richtung sie in regelmässigen Zeitabständen ändern. Solange das Material flüssig ist, richten sich die Keramikplättchen am Magnetfeld aus. Im verfestigten Material behalten die Plättchen ihre Orientierung bei.

Über die Zusammensetzung der Suspension und die Ausrichtung der Plättchen lassen sich über einen fortlaufenden Prozess in ein und demselben Objekt verschiedene Schichten mit unterschiedlichen Materialeigenschaften erzeugen. Dadurch entstehen komplexe Materialien, die natürliche Vorbilder wie Perlmutt oder Zahnschmelz nahezu perfekt imitieren. «Unsere Technik ist ähnlich wie 3D-Printing, jedoch zehnmal schneller und viel kostengünstiger», sagt Florian Bouville, Postdoc bei Studart und Co-Erstautor der Studie.

Künstlicher Zahn aus der Gipsform

Um das Potenzial der MASC-Technik aufzuzeigen, fertigte die Forschungsgruppe von André Studart einen künstlichen Zahn an, dessen Mikrostruktur diejenige eines echten Zahns imitiert. Die Oberfläche dieses Kunstzahns ist hart und komplex strukturiert wie diejenige eines echten Zahnes, während die darunter liegende Schicht weicher ist, genau wie das Zahnbein im natürlichen Vorbild.

Erst stellten die Erstautorin der Studie, die Doktorandin Hortense Le Ferrand, und ihre Kollegen einen Gipsabdruck eines menschlichen Weisheitszahnes her. Diese Gussform befüllten sie mit einer Suspension, die neben Aluminiumoxid-Plättchen auch Glas-Nanopartikel als Mörtel enthielt. Mit einem Magneten richteten sie die Plättchen senkrecht zur Oberfläche ihres Objektes aus. Nachdem die erste Lage trocken war, gossen die Wissenschaftler eine zweite Suspension in dieselbe Gussform. Diese Suspension enthielt jedoch keine Glaspartikel. Die Aluminiumoxid-Plättchen in der zweiten Schicht wurden mithilfe des Magneten waagrecht zur Zahnoberfläche ausgerichtet.

Diese zweilagige Struktur wurde schliesslich bei 1600 Grad «gebrannt», um das Material zu verdichten und zu härten. Fachleute sprechen bei diesem Vorgang von Sintern. Zuletzt füllten die Forscher die Poren, die nach dem Sintern noch vorhanden waren, mit einem in der Zahnmedizin verwendeten Kunststoff-Monomer, welches sich anschliessend polymerisierte.

Kunstzahn verhält sich wie echter Zahn

Mit dem Resultat sind die ETH-Forscher sehr zufrieden. «Das für den Kunstzahn erhobene Profil für Härte und Zähigkeit deckt sich genau mit demjenigen eines natürlichen Zahnes », freut sich Studart. Das Verfahren und das daraus hervorgehende Material würden sich daher für die Zahnmedizin anbieten.

Die aktuelle Studie sei jedoch erst ein Machbarkeitsnachweis, der aufzeige, dass sich die natürliche Feinstruktur eines Zahnes im Labor nachbilden lasse, so Studart. «Damit man das Material als Zahnersatz verwenden kann, muss man jedoch dessen Aussehen stark optimieren.» Der künstliche Zahn zeige allerdings deutlich auf, dass man mit dem neuen Verfahren ein Mass an Kontrolle über die Mikrostruktur eines Verbundmaterials erreichen könne, die bislang lebenden Organismen vorbehalten blieb. Ein Teil des MASC-Prozesses, nämlich die Magnetisierung und Ausrichtung der Keramikplättchen mithilfe des Magneten, wurde bereits patentiert.

Das neue Fertigungsverfahren für solch biomimetischen Komplexmaterialien lässt sich jedoch auch anderweitig verwenden. So könnten anstelle der Aluminumoxid-Plättchen auch Kupferplättchen verwendet werden, was den Einsatz solcher Materialien in der Elektronik zuliesse. «Ausgangsstoffe und Orientierung der Plättchen lassen sich beliebig kombinieren, sodass rasch und einfach eine grosse Palette verschiedenster Materialtypen mit unterschiedlichen Eigenschaften realisierbar wären», sagt Studart.

Literaturhinweis

Le Ferrand H, Bouville F, Niebel TP, Studart AR. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nature Materials, AOP, 20th Sept 2015. DOI: 10.1038/nmat4419

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/09/biomimetis...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wie wirksam sind Haftvermittler? Fraunhofer nutzt Flüssigkeitschromatographie zur Charakterisierung
17.10.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dem Lichtstrahl auf die Sprünge geholfen
21.07.2016 | SCHOTT AG

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik