Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biokompatible Beschichtungen zur Optimierung medizinischer Implantate

17.07.2009
Materialforscher und Nanowissenschaftler des Augsburger Physik-Instituts kooperieren in neuem DFG-Projekt mit Kernphysikern und Medizinern aus München und Mannheim/Heidelberg.

Die Erforschung und Herstellung von Beschichtungen, die das Einheilverhalten medizinischer Implantate verbessern und den Abrieb künstlicher Gelenke sowie dadurch auch entsprechende Infektionsraten reduzieren, sind das Ziel eines neuen, mit rund 750.000 Euro von der Deutschen Forschungsgemeinschaft (DFG) geförderten interdisziplinären Projekts, dessen beteiligte Wissenschaftler - Physiker und Mediziner der Universität Augsburg, der LMU und der TU München und des Universitätsklinikums Mannheim der Universität Heidelberg - sich am 15. Juli 2009 zu ihrer ersten Arbeitssitzung am Institut für Physik der Universität Augsburg trafen.

"Gemeinsam arbeiten wir daran, zu detaillierten Kenntnissen über die Zelladhäsion an sogenannten DLC-Schichten - das sind hauchdünne antibakterielle und diamantähnliche Materialien - zu gelangen, um mit solchen Beschichtungen ganz konkret die Funktionsdauer medizinischer Implantate verlängern und die Häufigkeit nötiger Revisionsoperationen an betroffenen Patienten deutlich reduzieren zu können", erläutert Prof. Dr. Bernd Stritzker. Zusammen mit Florian Schwarz hat er an seinem Augsburger Lehrstuhl für Experimentalphysik IV den zentralen Part, die antibakteriellen und biokompatiblen Beschichtungen mittels PIII (= Plasmaimmersions-Ionenimplantation; siehe http://www-2.physik.uni-augsburg.de/exp4/Page.php?Subj=PIII) herzustellen. Danach werden am Lehrstuhl für Experimentalphysik I (Prof. Dr. Achim Wixforth) spezifische lebende Zellen aufgetragen. So präpariert können an diesen Schichten dann mit aussagekräftigen standardisierten Testmethoden ihre Eigenschaften gemessen werden, die es zu optimieren gilt: die biologische Kompatibilität also sowie die biomechanische Verschleißfestigkeit und eine möglichst geringe bakterielle Adhäsion.

Projektspezifischer Biochip mit universellen Einsatzmöglichkeiten in der Bio-Werkstoffentwicklung

Zur Charakterisierung und Optimierung dieser antibakteriellen DLC-Beschichtungen werden die physikalische Analytik, die vor allem PD Dr. Walter Assmann vom Kernphysik-Lehrstuhl der LMU München beisteuert, sowie biokinetische Testverfahren herangezogen. Darüber hinaus kommt ein neuartiger "Biochip" zum Einsatz, den speziell in diesem Projektkontext Prof. Dr. Achim Wixforth, Dr. Matthias Schneider und Dr. Thomas Franke am Lehrstuhl für Experimentalphysik I der Universität Augsburg entwickeln. Er wird es ermöglichen, die Adhäsion unterschiedlicher Zellen in Abhängigkeit von der jeweiligen Implantatoberfläche präzise zu messen.

Auf diesem Biochip werden die jeweiligen Zellen einer durch akustische Oberflächenwellen (SAW) erzeugten und exakt definierten Flüssigkeitsströmung ausgesetzt, die ihre Haftung an der Beschichtung bestimmt. "Über seine spezielle Funktion in unserem Projekt hinaus, wird sich dieser Biochip wegen seiner universellen Einsatzmöglichkeiten und seiner hoch zeiteffizienten Messtechnik ausgezeichnet und universell als schnelles Screeningverfahren für die Bio-Werkstoffentwicklung eignen", so Stritzker.

Biologisch-biomechanische Evaluation durch Münchner und Heidelberger Mediziner

Die am Projekt beteiligten Mediziner des Lehrstuhls für Orthopädie und Unfallchirurgie der TU München (PD Dr. med. Rainer Burgkart, Dr. Hans Gollwitzer) sowie der Klinik für Dermatologie des Universitätsklinikums Mannheim der Universität Heidelberg (Prof. Dr. Stefan Schneider, Dr. Elwira Strozyk) werden das Zellwachstum und die antibakterielle Wirksamkeit der modifizierten DLC-Beschichtungen untersuchen und biologisch bzw. biomechanisch evaluieren.

Biologische Prozesse auf anorganischen Oberflächen: eine genuin interdisziplinäre Herausforderung

"Diese interdisziplinär an den von uns hergestellten Implantatoberflächen durchgeführten Experimente werden zu wesentlichen und weiterführenden neuen Erkenntnissen über die Zelladhäsion auf harten Oberflächen führen", ist Stritzker sich sicher. Das DFG-Projekt basiere auf der Einsicht, dass sich ein tieferes Verständnis biologischer Prozesse auf anorganischen Oberflächen nur im engen Zusammenwirken von Materialwissenschaft mit biologischen und medizinischen Untersuchungsmethoden erreichen lasse. Nur durch diese Kombination werde es möglich, den Einfluss der Struktur und der chemischen Zusammensetzung der Beschichtungsmaterialien auf das Wachstum von Körperzellen und Bakterien zu klären und diesen Einfluss dann auch gezielt zu nutzen.

Iterativer interdisziplinärer Optimierungsprozess

"Als Gegenleistung gewissermaßen", meint Stritzker, "erhalten wir Materialwissenschaftler aus diesen Erkenntnissen wertvolle Hinweise für die von uns angestrebte Optimierung des Designs und der Herstellung von biokompatiblen Materialien, die - medizinisch umgesetzt - dann unmittelbar dem Patienten zugute kommen." Mit dem Projekt werde insofern "eine Art iterativer und interdisziplinärer Optimierungsprozess" in Gang gesetzt, von dem alle beteiligten Disziplinen profitieren.

Die DFG hat den an diesem neuen Projekt beteiligten Forschergruppen aus Medizin und Physik insgesamt rund 750.000 Euro auf drei Jahre zur Verfügung gestellt. Für die der Bewilligung vorausgegangene Begutachtung des Projektantrags musste aufgrund seines fachübergreifend physikalisch-medizinischen Ansatzes ein neues und sehr aufwändiges Begutachtungsverfahren entwickelt werden, an dem alle betroffenen Fachabteilungen der DFG beteiligt wurden.

Ansprechpartner:
Prof. Dr. Bernd Stritzker
Lehrstuhl für Experimentalphysik IV
Universität Augsburg
D-86135 Augsburg
Tel. +49(0)821-598-3400
bernd.stritzker@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.uni-augsburg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie