Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biokompatible Beschichtungen zur Optimierung medizinischer Implantate

17.07.2009
Materialforscher und Nanowissenschaftler des Augsburger Physik-Instituts kooperieren in neuem DFG-Projekt mit Kernphysikern und Medizinern aus München und Mannheim/Heidelberg.

Die Erforschung und Herstellung von Beschichtungen, die das Einheilverhalten medizinischer Implantate verbessern und den Abrieb künstlicher Gelenke sowie dadurch auch entsprechende Infektionsraten reduzieren, sind das Ziel eines neuen, mit rund 750.000 Euro von der Deutschen Forschungsgemeinschaft (DFG) geförderten interdisziplinären Projekts, dessen beteiligte Wissenschaftler - Physiker und Mediziner der Universität Augsburg, der LMU und der TU München und des Universitätsklinikums Mannheim der Universität Heidelberg - sich am 15. Juli 2009 zu ihrer ersten Arbeitssitzung am Institut für Physik der Universität Augsburg trafen.

"Gemeinsam arbeiten wir daran, zu detaillierten Kenntnissen über die Zelladhäsion an sogenannten DLC-Schichten - das sind hauchdünne antibakterielle und diamantähnliche Materialien - zu gelangen, um mit solchen Beschichtungen ganz konkret die Funktionsdauer medizinischer Implantate verlängern und die Häufigkeit nötiger Revisionsoperationen an betroffenen Patienten deutlich reduzieren zu können", erläutert Prof. Dr. Bernd Stritzker. Zusammen mit Florian Schwarz hat er an seinem Augsburger Lehrstuhl für Experimentalphysik IV den zentralen Part, die antibakteriellen und biokompatiblen Beschichtungen mittels PIII (= Plasmaimmersions-Ionenimplantation; siehe http://www-2.physik.uni-augsburg.de/exp4/Page.php?Subj=PIII) herzustellen. Danach werden am Lehrstuhl für Experimentalphysik I (Prof. Dr. Achim Wixforth) spezifische lebende Zellen aufgetragen. So präpariert können an diesen Schichten dann mit aussagekräftigen standardisierten Testmethoden ihre Eigenschaften gemessen werden, die es zu optimieren gilt: die biologische Kompatibilität also sowie die biomechanische Verschleißfestigkeit und eine möglichst geringe bakterielle Adhäsion.

Projektspezifischer Biochip mit universellen Einsatzmöglichkeiten in der Bio-Werkstoffentwicklung

Zur Charakterisierung und Optimierung dieser antibakteriellen DLC-Beschichtungen werden die physikalische Analytik, die vor allem PD Dr. Walter Assmann vom Kernphysik-Lehrstuhl der LMU München beisteuert, sowie biokinetische Testverfahren herangezogen. Darüber hinaus kommt ein neuartiger "Biochip" zum Einsatz, den speziell in diesem Projektkontext Prof. Dr. Achim Wixforth, Dr. Matthias Schneider und Dr. Thomas Franke am Lehrstuhl für Experimentalphysik I der Universität Augsburg entwickeln. Er wird es ermöglichen, die Adhäsion unterschiedlicher Zellen in Abhängigkeit von der jeweiligen Implantatoberfläche präzise zu messen.

Auf diesem Biochip werden die jeweiligen Zellen einer durch akustische Oberflächenwellen (SAW) erzeugten und exakt definierten Flüssigkeitsströmung ausgesetzt, die ihre Haftung an der Beschichtung bestimmt. "Über seine spezielle Funktion in unserem Projekt hinaus, wird sich dieser Biochip wegen seiner universellen Einsatzmöglichkeiten und seiner hoch zeiteffizienten Messtechnik ausgezeichnet und universell als schnelles Screeningverfahren für die Bio-Werkstoffentwicklung eignen", so Stritzker.

Biologisch-biomechanische Evaluation durch Münchner und Heidelberger Mediziner

Die am Projekt beteiligten Mediziner des Lehrstuhls für Orthopädie und Unfallchirurgie der TU München (PD Dr. med. Rainer Burgkart, Dr. Hans Gollwitzer) sowie der Klinik für Dermatologie des Universitätsklinikums Mannheim der Universität Heidelberg (Prof. Dr. Stefan Schneider, Dr. Elwira Strozyk) werden das Zellwachstum und die antibakterielle Wirksamkeit der modifizierten DLC-Beschichtungen untersuchen und biologisch bzw. biomechanisch evaluieren.

Biologische Prozesse auf anorganischen Oberflächen: eine genuin interdisziplinäre Herausforderung

"Diese interdisziplinär an den von uns hergestellten Implantatoberflächen durchgeführten Experimente werden zu wesentlichen und weiterführenden neuen Erkenntnissen über die Zelladhäsion auf harten Oberflächen führen", ist Stritzker sich sicher. Das DFG-Projekt basiere auf der Einsicht, dass sich ein tieferes Verständnis biologischer Prozesse auf anorganischen Oberflächen nur im engen Zusammenwirken von Materialwissenschaft mit biologischen und medizinischen Untersuchungsmethoden erreichen lasse. Nur durch diese Kombination werde es möglich, den Einfluss der Struktur und der chemischen Zusammensetzung der Beschichtungsmaterialien auf das Wachstum von Körperzellen und Bakterien zu klären und diesen Einfluss dann auch gezielt zu nutzen.

Iterativer interdisziplinärer Optimierungsprozess

"Als Gegenleistung gewissermaßen", meint Stritzker, "erhalten wir Materialwissenschaftler aus diesen Erkenntnissen wertvolle Hinweise für die von uns angestrebte Optimierung des Designs und der Herstellung von biokompatiblen Materialien, die - medizinisch umgesetzt - dann unmittelbar dem Patienten zugute kommen." Mit dem Projekt werde insofern "eine Art iterativer und interdisziplinärer Optimierungsprozess" in Gang gesetzt, von dem alle beteiligten Disziplinen profitieren.

Die DFG hat den an diesem neuen Projekt beteiligten Forschergruppen aus Medizin und Physik insgesamt rund 750.000 Euro auf drei Jahre zur Verfügung gestellt. Für die der Bewilligung vorausgegangene Begutachtung des Projektantrags musste aufgrund seines fachübergreifend physikalisch-medizinischen Ansatzes ein neues und sehr aufwändiges Begutachtungsverfahren entwickelt werden, an dem alle betroffenen Fachabteilungen der DFG beteiligt wurden.

Ansprechpartner:
Prof. Dr. Bernd Stritzker
Lehrstuhl für Experimentalphysik IV
Universität Augsburg
D-86135 Augsburg
Tel. +49(0)821-598-3400
bernd.stritzker@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.uni-augsburg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung
14.12.2017 | Universität Bayreuth

nachricht Warum Teige an Oberflächen kleben
14.12.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten