Neue Wege der Bionik durch direkte Verwendung natürlicher Strukturen
Wegen möglicher Gefahren für Mensch oder Material werden Biofilme meist als Problem bekämpft. Doch verfügen diese Gemeinschaften von Algen, Pilzen oder Bakterien über wissenschaftlich und technisch interessante Eigenschaften. Ein Team der Technischen Universität München (TUM) beschreibt Verfahren aus der Biologie, die Biofilme als Bauarbeiter von Strukturschablonen für neue Werkstoffe einsetzen, welche die Eigenschaften natürlicher Materialien besitzen. Dies war bislang nur eingeschränkt möglich.
Rotalgen bewegen sich zum Licht hin und scheiden dabei Ketten aus Zuckermolekülen aus. Durch zeitlich veränderliche Lichtmuster gewinnen die Forscher und Forscherinnen aus diesen langen, feinen Polymerfäden maßgeschneiderte Schablonen, die sie für Funktionskeramiken verwenden. (Foto: v. Opdenbosch/TUM)
Ob Holz, Knochen, Perlmutt, oder Zähne – über Jahrmillionen sind solche Materialien durch die Evolution nach dem Prinzip angepasster Stabilität bei möglichst geringem Gewicht optimiert worden. Für viele technologische Entwicklungen lieferte die Natur die Blaupause. Beispiele dafür sind Flugzeugflügel, der Klettverschluss oder die Oberflächenversiegelung per Lotuseffekt. Doch erreichen die Nachbauten nicht die strukturelle Komplexität des natürlichen Originals.
„In der Natur finden sich viele Materialien mit Eigenschaften, die künstliche Stoffe in dieser Form nicht erreichen", sagt Professor Cordt Zollfrank, der mit seinem Team am Lehrstuhl für Biogene Polymere am TUM Campus Straubing für Biotechnologie und Nachhaltigkeit (TUM CS) an Grundlagen für die Entwicklung neuer Werkstoffe forscht.
Größte Probleme auf der kleinsten Ebene
Als Schnittstelle zwischen Biologie und Technik sucht die Bionik nach dem Vorbild der Natur Lösungen für technische Probleme. So lange sie sich dabei darauf beschränkte, die Formen aus der Natur wie beispielsweise bei der Konstruktion von Flugzeugflügeln oder Schiffsrümpfen als Vorlage für ihre Entwicklungen zu nehmen, hielten sich die Probleme in Grenzen. Anders verhält es sich bei der Nachahmung der Materialeigenschaften natürlicher Baustoffe. Denn diese befinden sich in den inneren Strukturen verankert, wo Fasern über viele Größenordnungen und über verschiedene hierarchische Ebenen miteinander verknüpft sind.
„Üblicherweise finden sich die hauptsächlichen Ursachen der mechanischen Materialeigenschaften wie Elastizität, Festigkeit oder Zähigkeit auf den kleinsten Ebenen dieser Hierarchien, vor allem auf der Nanometer-Skala", beschreibt Dr. Daniel Van Opdenbosch, Gruppenleiter an Zollfranks Lehrstuhl, und einer der Autoren des Artikels, das Hauptproblem bei der Übertragung auf technische Problemlösungen. Wenn aber die Mikroorganismen selbst oder ihre Ausscheidungen den Werkstoff bilden, werden die technisch schwierigen komplexen Vernetzungen gleich mitgeliefert.
Zukunft der Bionik
In einem Artikel für das Fachmagazin „Advanced Materials" stellen die Forscherinnen und Forscher der TU München gleich eine Reihe von Verfahren aus der Biologie vor, die mit Licht, Wärme, speziell präparierten Substraten oder anderen Reizen die Bewegungsrichtung von Mikroorganismen in ganz bestimmte Bahnen leiten. „Für die Materialforschung sind diese Erkenntnisse aus der Biologie zur Mikrobensteuerung durch gezielte Reize zukunftsweisend“, sagt Professor Cordt Zollfrank. Denn damit bestehe die Möglichkeit, aus den Mikroben selbst oder ihren Sekreten maßgeschneiderte Schablonen für neue Materialien mit natürlichen Strukturen herzustellen. „Mit unserem Artikel wollen wir zeigen, wo in den biologisch inspirierten Materialwissenschaften die Reise hingeht", sagt der Professor.
Berührungsfreie Formgebung
In Straubing wendet Daniel Van Opdenbosch mit seiner Gruppe bereits einige dieser Methoden erfolgreich an. Im Rahmen eines Reinhart Koselleck-Projektes der Deutschen Forschungsgemeinschaft (DFG) machen sich die Forscher und Forscherinnen dabei die speziellen Eigenschaften von Rotalgen zu Nutze, deren Bewegungsrichtung vom Lichteinfall abhängt, und die Ketten aus Zuckermolekülen ausscheiden. Durch zeitlich veränderliche Lichtmuster, die sie in das Nährmedium der Algen projizieren, gewinnen die Forscher aus diesen langen, feinen Polymerfäden maßgeschneiderte Schablonen, die sie für die Herstellung von Funktionskeramiken verwenden.
Doch lassen sich mithilfe der Algen in beliebig viele Formen für ein breites Anwendungsfeld gestalten. Dieses reicht von Elektroden für Batterien über neue Bildschirm- und Displaytechnologien bis hin zu Anwendungen in der Medizin etwa als Knochen- und Gewebeersatz. Das Wachsenlassen komplexer Mikrostrukturen wie ganzen Bauteilen und anderen hierarchisch strukturierten Materialien liegt zwar noch im Bereich des Visionären, rückt aber durch die Grundlagenforschung der Straubinger Wissenschaftler der TUM in Reichweite.
Publikation
Steffi Deuerling, Sabine Kugler, Moritz Klotz, Cordt Zollfrank and Daniel Van Opdenbosch: A perspective on bio-mediated material structuring, Advanced Materials, 2017. DOI: 10.1002/adma.201703656
Kontakt
Technische Universität München
TUM Campus Straubing für Biotechnologie und Nachhaltigkeit
Dr. Daniel Van Opdenbosch
Professur für Biogene Polymere
Gruppe Bio-mediierte Materialsynthese
Tel.:+49 9421 187 452
E-Mail: daniel.van-opdenbosch@tum.de
Die Technische Universität München (TUM) ist mit mehr als 550 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 41.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. www.tum.de
Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34376/
Weitere Berichte zu: > Advanced Materials > Algen > Biofilme > Bionik > Biotechnologie > Mikroorganismen > Polymere > TUM > Werkstoffe > Wirtschafts- und Sozialwissenschaften
Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen
23.04.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS
Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.
Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...
Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.
Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...
Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.
Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...
Anzeige
Anzeige
Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe
26.04.2018 | Veranstaltungen
Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland
26.04.2018 | Veranstaltungen
infernum-Tag 2018: Digitalisierung und Nachhaltigkeit
24.04.2018 | Veranstaltungen
Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde
26.04.2018 | Informationstechnologie
Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst
26.04.2018 | Biowissenschaften Chemie
Berner Mars-Kamera liefert erste farbige Bilder vom Mars
26.04.2018 | Physik Astronomie