Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert

28.03.2017

Die Elektronik in Touchscreens, Bildschirmen und Solarzellen muss gleichzeitig transparent und leitfähig sein. Zunehmend sollen Elektroden aber auch biegsam sein, um sie beispielsweise direkt in Kleidung oder Verpackungen einbauen zu können. Möglich wäre dies durch eine druckbare Elektronik: Forscher im Arbeitskreis von Professor Tobias Kraus am INM – Leibniz-Institut für Neue Materialien haben dafür eine neuartige Nano-Tinte entwickelt: Sie enthält extrem dünne Golddrähte, die sich während des Druckens zu Leiterbahnen bündeln.

Die Master-Absolventin Indra Backes hat dieses „Nano-Druck-Verfahren“ entscheidend vorangebracht. Für ihre Masterarbeit wurde sie Ende letzten Jahres ausgezeichnet.


Biegsamer Touchscreen der Zukunft: Master-Absolventin Indra Backes hat mit einer Folie experimentiert, auf die sich hauchzarte, leitfähige Golddrähte aufdrucken lassen.

©h.ollmann

Die Elektronik in Touchscreens, Bildschirmen und Solarzellen muss gleichzeitig transparent und leitfähig sein. Zunehmend sollen Elektroden aber auch biegsam sein, um sie beispielsweise direkt in Kleidung oder Verpackungen einbauen zu können. Möglich wäre dies durch eine druckbare Elektronik: Forscher im Arbeitskreis von Professor Tobias Kraus am INM – Leibniz-Institut für Neue Materialien haben dafür eine neuartige Nano-Tinte entwickelt: Sie enthält extrem dünne Golddrähte, die sich während des Druckens zu Leiterbahnen bündeln. Die Master-Absolventin Indra Backes hat dieses „Nano-Druck-Verfahren“ entscheidend vorangebracht. Für ihre Masterarbeit wurde sie Ende letzten Jahres ausgezeichnet.

Eine biegsame Elektronik herzustellen, die transparent ist und deren Leitfähigkeit auch bei Verformung hoch bleibt, haben sich die Wissenschaftler des Programmbereichs „Strukturbildung“ am INM zum Ziel gesetzt. In einem Vorversuch testeten sie das so genannte Nano-Druck-Verfahren (engl. „Nanoimprint“). „Damit lässt sich ein biegsames Gitter feiner, leitender Golddrähte herstellen; sie entstehen aus einer flüssigen Tinte, die per Stempel aufgetragen und strukturiert wird“, fasst Indra Backes das Prinzip zusammen. In ihrer Masterarbeit im Fach Materialchemie hat sich die 27-jährige Saarländerin am INM damit befasst, dieses Verfahren zu verbessern und auch auf größeren Flächen anzuwenden. Dafür ist sie Ende letzten Jahres mit einem Preis für besondere Studienleistungen der Naturwissenschaftlich-Technischen Fakultät der Saar-Uni für den besten Masterabschluss ausgezeichnet worden.

Gängige Touchscreens von Smartphones bestehen aus einer leitfähigen, transparenten Keramik-Schicht. „Unser Material entsteht dagegen aus einer Tinte, die Gold-Nano-Drähte enthält“, erklärt die junge Chemikerin. Diese sind mehrere Mikrometer lang und mit einem Durchmesser von weniger als zwei Nanometern hauchzart. Die Tinte werde „aktive Tinte“ genannt, weil sich die Golddrähte, sobald das Lösungsmittel verdampft, auf der Unterlage zu stabilen Bündeln anordnen – ähnlich einem Wollfaden, der aus einzelnen Garnen besteht. Aufgetragen werden sie mittels eines elastischen Kunststoff-Stempels. Dieser wird aus flüssigen Materialien hergestellt, die beim Trocknen aushärten. Indra Backes hat verschiedene Polyurethane und Silikone hinsichtlich ihrer Eignung als Stempel untersucht. Und auch die Unterlage hat sie ausgetestet und dabei mit Glas und Folie experimentiert. Am Ende konnte sie zeigen, dass das Verfahren auch auf Folie funktioniert – eine Voraussetzung für die Biegsamkeit eines Displays.

Doch wie entsteht das Goldgitter? „Die Stempel-Oberfläche weist Mikrostrukturen auf – winzige Kanäle, die ein Muster bilden. Wird nun ein Tinten-Tropfen auf eine Unterlage aufgebracht und dann der Stempel aufgedrückt, so läuft die Tinte in die kleinen Kanäle, und die Goldpartikel ordnen sich zu Bündeln, also kleinen Leiterbahnen, während das Lösungsmittel verdampft“, erklärt Indra Backes. Das Ergebnis sind feine Golddrähte, die auf dem Untergrund je nach Stempel verschiedene Geometrien bilden, sich beispielsweise in einem Schachbrett- oder Honigwabenmuster anordnen. „Die feinen Golddrähte bilden ein leitfähiges Goldnetz. Dieses ist äußerst stabil und gleichzeitig hochflexibel – und zudem transparent“, schildert die junge Saarländerin. Damit ist es für die Herstellung verschiedener optoelektronischer Geräte wie Displays oder Solarzellen brauchbar. „Je nach Anwendung lässt sich mit der Anordnung der Goldfäden im Gitter sowie der Dicke der Drähte spielen.“ So sei für Solarzellen eine gute Leitfähigkeit wichtiger als eine hohe Transparenz, die für Smartphone-Displays entscheidend sei.

Um das Verfahren zu verbessern, hat die Nachwuchswissenschaftlerin sowohl an den Stempelmaterialien, als auch an den Tinten geforscht: Für den Stempel eigne sich das Silikon Polydimethylsiloxan (PDMS) besonders gut, berichtet sie: Hochflexibel, passt sich das Material gut ans Substrat an, sodass auch winzigste Strukturen abgebildet werden können. Zudem ist es sehr durchlässig, sodass das Lösungsmittel in der Tinte gut durch den Stempel entweichen kann. „Damit ist erstmals die Herstellung eines 3,5 mal 7 Zentimeter großen Stempels gelungen“, sagt Backes. Zum „Aufreinigen“ der Tinte hat sie mit verschiedenen polaren Lösungsmitteln experimentiert, unter anderem mit Ethanol. Damit lassen sich überschüssige so genannte Liganden entfernen: organisches Material in der Lösung, das die Leitfähigkeit der Golddrähte vermindern würde. Auch erste Möglichkeiten, das Herstellungsverfahren zu automatisieren, hat Indra Backes erfolgreich erprobt.

Gemeinsame Pressemitteilung des Leibniz-Instituts für Neue Materialien und der Universität des Saarlandes

Kontakt:
Indra Backes
E-Mail.: indra.backes@leibniz-inm.de

Prof. Dr. Tobias Kraus
Leiter der Abteilung Strukturbildung
Tel.: +49 (0)681 9300-389
E-Mail: tobias.kraus@leibniz-inm.de

Weitere Infos:
_ zum Leibniz-Institut für Neue Materialien: http://www.leibniz-inm.de
_zum Studiengang Materialchemie:
http://www.uni-saarland.de/master/studienangebot/natwiss/materialchemie/info.html

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681 302-2601) richten.

Gerhild Sieber | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie