Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus

Die Nanopartikel weisen große Poren auf, zeigt die Elektronenmikroskopieaufnahme. HZB/adfm.201701176

Um Strom kompakt zu speichern, sind Lithium-Akkus momentan eine der besten Lösungen. In diesen Akkus wandern Lithium-Ionen während des Entladens von der Anode zum elektrischen Gegenpol, die Kathode. Diese besteht in der Regel aus Schwermetallverbindungen, die teuer und giftig sind.

Eine interessante Alternative sind Lithium-Schwefel-Batterien. Hier besteht die Kathode nicht aus Schwermetall, sondern aus Schwefel, einem preiswerten und reichlich verfügbaren Material. Wandern Lithium-Ionen während des Entladens zur Kathode, so läuft dort eine Reaktion ab, bei der sich Lithiumsulfid (Li2S) bildet.

Ein unerwünschter Nebeneffekt sind jedoch die dabei ebenfalls entstehenden Lithium-Polysulfide, wodurch im Lauf von mehreren Ladezyklen die Kapazität der Batterie abnimmt. Deshalb arbeiten Forscher weltweit an verbesserten Kathodenmaterialien, die in der Lage sind, die Polysulfide einzuschließen, zum Beispiel mit Nanopartikeln aus Titandioxid (TiO2).

Ti4O7-Nanopartikel mit Poren

Das HZB-Team um Prof. Dr. Yan Lu hat nun ein Kathodenmaterial hergestellt, das noch deutlich leistungsfähiger ist. Auch hier sorgen Nanopartikel für den Einschluss des Schwefels. Sie bestehen allerdings nicht aus Titandioxid, sondern aus Ti4O7-Molekülen, die eine komplexe Architektur bilden: sie sind auf einer Kugelfläche angeordnet, die Poren aufweist. Diese porösen Nanopartikel binden Polysulfide wesentlich stärker als die üblichen TiO2-Nanopartikel.

Herstellung in mehreren Schritten

„Wir haben ein besonderes Herstellungsverfahren entwickelt, um diese komplexe dreidimensional vernetzte Porenstruktur zu erzeugen“, erklärt Yan Lu. Im ersten Schritt stellt Yan Lu dafür Gerüststrukturen aus Polymeren her, die winzige Kugeln mit poröser Oberfläche bilden.

Diese Gerüststrukturen werden in weiteren Schritten vorbereitet und in eine Lösung aus Titanisopropoxid getaucht. Durch anschließende Hitzebehandlung bildet sich eine Schicht aus Ti4O7, wobei das Polymer darunter verdampft. Verglichen mit anderen Kathodenmaterialien aus Titanoxiden besitzen die Ti4O7-Nanopartikel eine extrem große Oberfläche. 12 Gramm dieses Materials würden ein Fußballfeld bedecken.

Funktionsweise der Nanopartikel an BESSY II entschlüsselt

Röntgenspektroskopie-Messungen (XPS) am CISSY-Experiment von BESSY II zeigen, dass Schwefel-Verbindungen sich an den nanostrukturierten Oberflächen fest anbinden.

Hohe spezifische Kapazität

Dies erklärt auch die hohe spezifische Kapazität von 1219 Milliamperestunden (mAh) pro Gramm bei 0,1 C (1 C = 1675 mA g-1), die auch durch wiederholtes Laden und Entladen nur wenig reduziert wird (0.094 Prozent pro Zyklus). Zum Vergleich: Bei Kathodenmaterialien aus TiO2-Nanopartikeln liegt diese spezifische Kapazität bei 683 mAh/g. Um die Leitfähigkeit des Materials zu erhöhen, ist eine zusätzliche Beschichtung der Nanopartikel mit Kohlenstoff möglich. Dabei bleibt die hochporöse Struktur erhalten.

Auf industrielle Maßstäbe übertragbar

„Wir haben über ein Jahr daran gearbeitet, diese Synthese zuverlässig zu optimieren. Nun wissen wir, wie es geht. Jetzt wollen wir daran arbeiten, das Material als Dünnschicht herzustellen“, sagt Yan Lu. Und das Beste: Was im Labor gelingt, ist in diesem Fall auch auf industrielle Maßstäbe übertragbar. Denn alle Prozesse, von der Kolloidchemie bis zur Dünnschichttechnologie sind aufskalierbar.

Die Arbeit ist in Advanced Functional Materials (2017) publiziert: „Porous Ti4O7 Particles with Interconnected-Pores Structure as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries“; Shilin Mei, Charl J. Jafta, Iver Lauermann, Qidi Ran, Martin Kärgell, Matthias Ballauff, Yan Lu

Kontakt:
Prof. Dr. Yan Lu
E-Mail: yan.lu@helmholtz-berlin.de

Pressestelle
Dr. Antonia Rötger
E-Mail: antonia.roetger@helmholtz-berlin.de

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14669&sprache=de&ty…
http://onlinelibrary.wiley.com/doi/10.1002/adfm.201701176/abstract;jsessionid=F0…

Media Contact

Dr. Ina Helms Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ultraleichte selbstglättende Spiegel

…erhöhen die Effizient hochmoderner Teleskope. Schon immer faszinierte den Menschen der Blick in den Sternenhimmmel und nicht minder faszinierend ist es, die Erde aus dem Weltraum zu betrachten. Möglich ist…

Überraschende Umkehr in Quantensystemen

Forschende haben topologisches Pumpen in einem künstlichen Festkörper aus kalten Atomen untersucht. Die Atome wurden mit Laserstrahlen gefangen. Überraschenderweise kam es zu einer plötzlichen Umkehr der Atome an einer Wand…

Magnetisch durch eine Prise Wasserstoff

Neue Idee, um die Eigenschaften ultradünner Materialien zu verbessern. Magnetische zweidimensionale Schichten, die aus einer oder wenigen Atomlagen bestehen, sind erst seit kurzem bekannt und versprechen interessante Anwendungen, zum Beispiel…

Partner & Förderer