Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beschichtungen durch Modifizierung ihrer inneren Grenzflächen verbessern

21.12.2016

Um erfolgreich zu sein, müssen Beschichtungen der Zukunft effizienter einsetzbar sein und darüber hinaus in ihrem Eigenschaftsprofil zumindest den etablierten Beschichtungen entsprechen. Für viele innovative Beschichtungslösungen ist es oftmals schwierig, die für den Marktzugang erforderlichen Anforderungskataloge zu erfüllen. Deshalb setzt das Fraunhofer IPA vermehrt auf bereits bestehende Beschichtungssysteme, bei denen versucht wird, das Eigenschaftsprofil gezielt durch Funktionalisierung der beteiligten inneren Grenzflächen zu verbessern.

Die Problematik vieler innovativer und sehr guter Ansätze im Beschichtungsbereich zeigt sich besonders deutlich bei vergleichenden Patent- und Marktrecherchen. Mitunter finden sich in den Patentanmeldungen brillante Lösungsansätze, von denen jedoch überraschenderweise nur wenige zur Marktreife gelangen.


Rechts die Beschichtung mit Pigmentstratifizierung (um Faktor 3 niedriger) und links die aus konventionellen Pigmenten bestehende Referenzbeschichtung.

Fraunhofer IPA

Der Grund hierfür liegt meistens bei den in der Praxis eingesetzten, anspruchsvollen Anforderungskatalogen. Sie erschweren einen Markteintritt neuer innovativer Produkte stark oder verzögern diesen zumindest.

Durch geschickte Kombinationen bereits genutzter Komponenten wie Füllstoffe, Pigmente und Polymere mit bekannten, aber unterschiedlichen Eigenschaftsprofilen ließen sich in der Vergangenheit viele exzellente Beschichtungssysteme auf den Markt bringen. Für zukünftige Beschichtungssysteme wird es hingegen immer schwieriger, eine Wertsteigerung durch Anwendung dieses Konzepts zu finden.

Aus dem Zwang zur Innovation wird dann oft der risikoreichere Weg zu einer Basisentwicklung beschritten, die auf einem vollständig neuartigen Ansatz beruht. Dabei wird häufig übersehen, dass in der gezielten Modifizierung von Grenzflächen auch bei den bereits gängigen Beschichtungssystemen ein noch bisher kaum genutztes innovatives Verbesserungspotenzial steckt. Dieser weniger risikobehaftete Ansatz wird seit Jahren erfolgreich am Fraunhofer IPA bei Forschungsprojekten im Beschichtungsbereich verfolgt.

Von zentraler Bedeutung ist bei diesem Konzept eine gezielte Modifizierung der beteiligten Grenzflächen: auf der einen Seite der in den Beschichtungen vorhandenen Füllstoffe und Pigmente, auf der anderen Seite der Polymermatrix durch geringfügige Additivierung.

So können durch eine gezielte anorganisch-/organische Oberflächenmodifizierung von bewährten Füllstoffen und Pigmenten auch zusätzliche Funktionen in marktüblichen Bindemitteln besonders effizient eingesetzt werden, beispielsweise durch zusätzliche Anwendung von sogenannten Stratifizierungseffekten, d. h. einer inneren Schichtbildung mit Konzentrationsgradienten.

Zum einen wird dadurch ein neues Eigenschaftsprofil als »Added Value« für die Beschichtung zugänglich, zum anderen lassen sich dadurch zukünftig konventionell notwendige zweifache Lackschichtaufträge durch eine Einschichtapplikation ersetzen. Dieser Innovationsschritt ist sicherlich nicht für alle Mehrschichtsysteme möglich oder gewinnbringend. Für viele gebräuchliche Systeme bietet er aber große Verbesserungspotenziale mit abschätzbaren Risiken.

Dass solche innovativen, stratifizierenden Beschichtungssysteme bei gleicher Pigmentvolumenkonzentration (PVK) auch in herkömmlichen Beschichtungen möglich sind, zeigen Laser-Scanning-Mikroskop-Aufnahmen und die numerische Auswertung der Pigmentgehalte der oberflächlichen Schichten im Vergleich. Die Resultate am Fraunhofer IPA belegen, dass es zukünftig durch anorganisch-/organische Partikelfunktionalisierungen in Verbindung mit gezielten Stratifizierungseffekten möglich sein wird, neuartige innovative Lösungsansätze im Beschichtungsbereich zu etablieren.

Pressekommunikation
Jörg-Dieter Walz | Telefon +49 711 970-1667 | presse@ipa.fraunhofer.de

Fachlicher Ansprechpartner
Dr. rer. nat. Marc Entenmann | Telefon +49 711 970-3854 | marc.entenmann@ipa.fraunhofer.de

Weitere Informationen:

http://www.ipa.fraunhofer.de/beschichtungen_verbessern.html

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment

25.09.2017 | Biowissenschaften Chemie

Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas

25.09.2017 | Physik Astronomie

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten