Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Spitzenforschung gegen Metall-Ermüdung

24.04.2002


Eine Nachwuchs-Forschergruppe des Spitzenbereichs wird unter Leitung von Dr.-Ing. Igor Altenberger am Institut für Werkstofftechnik der Universität Kassel ab Juli entstehen. Mit Unterstützung des Emmy Noether-Programms der Deutschen Forschungsgemeinschaft (DFG) wird er seinen eigenen, in Deutschland einzigartigen Forschungsschwerpunkt aufbauen. Dabei geht es darum, die Ermüdung von Metallteilen, wie sie in Flugzeugturbinen oder im Kraftwerksbau verwendet werden, durch Randschichtverfestigung zu vermeiden. Bei der Randschichtverfestigung wird bei metallischen Werkstoffen, insbesondere an hochbeanspruchten Stellen, die Oberfläche lokal durch spezielle Verfahren wie Kugelstrahlen, Festwalzen oder Laserschockverfestigung mechanisch bearbeitet. Anders als beim Beschichten von Metallen kommt es dabei zu keiner Änderung der chemischen Zusammensetzung. In der Nachwuchs-Forschergruppe will Altenberger klären, warum diese Randschichten die Metalle vor dem Prozess der Ermüdung schützen.

Mit dem Emmy Noether-Programm fördert die Deutsche Forschungsgemeinschaft (DFG) den Aufbau der Nachwuchsforschergruppe. Das Emmy Noether-Programm soll besonders qualifizierten jungen Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftlern einen Weg zu früher wissenschaftlicher Selbständigkeit eröffnen. Den in diesem Programm geförderten WissenschaftlerInnen wird unmittelbar nach der Promotion die Möglichkeit gegeben, über einen zusammenhängenden Zeitraum von maximal sechs Jahren durch einen Forschungsaufenthalt im Ausland und eine anschließende eigenverantwortliche Forschungstätigkeit im Inland die Voraussetzungen für eine Berufung als Hochschullehrer/in zu erlangen. Verbunden mit der Leitung einer eigenen Nachwuchsgruppe ist auch die Übernahme qualifikationsspezi fischer Lehraufgaben in angemessenem Umfang. Der Materialforscher Igor Altenberger zählt zu den ersten Emmy Noether-Stipendiaten, die nach zwei Jahren Forschungsaufenthalt im Ausland nach Deutschland zurückkehren; er wird Ende Mai wieder an der Kasseler Universität sein.

Altenberger untersuchte an der University of California, Berkeley, in den vergangenen zwei Jahren das Ermüdungsverhalten von Metallen, z.B. solchen, die in Flugzeugturbinen oder im Kraftwerksbau verwendet werden. Unter Ermüdung verstehen Materialforscher die Entstehung und Ausbreitung feinster Risse, die durch zyklische Beanspruchung von Materialien verursacht werden. Diese können schlimmstenfalls zum Durchbrechen ganzer Bauteile führen und stellen eine häufige Schadensursache im Maschinen- und Fahrzeugbau dar. Um diesen Prozess aufzuhalten und die Sicherheit von Bauteilen zu erhöhen, werden metallische Werkstoffe mechanisch randschichtverfestigt. Das bedeutet, dass insbesondere an hochbeanspruchten Stellen die Oberfläche lokal durch spezielle Verfahren wie Kugelstrahlen, Festwalzen oder Laserschockverfestigung mechanisch bearbeitet wird, ohne dass es dabei zu einer Änderung der chemischen Zusammensetzung kommt, wie etwa beim Beschichten.

Igor Altenberger interessiert sich dafür, warum diese Randschichten die Metalle vor dem Prozess der Ermüdung schützen. Bereits in seiner Doktorarbeit am Kasseler Institut für Werkstofftechnik, die er 1999 in der Forschungsgruppe Metallische Werkstoffe unter Leitung von Prof. Dr.-Ing. Berthold Scholtes im Fachbereich Maschinenbau mit Auszeichnung abgelegt hatte und die auch mit einem Nachwuchspreis der Deutschen Gesellschaft für Materialkunde ausgezeichnet wurde, befasste er sich mit der Randschichtverfestigung. Er fand heraus, welchen bedeutenden Einfluss die Mikrostruktur derartiger Randschichten beim Schutz metallischer Werkstoffe gegen Ermüdung ausübt. An der University of California untersuchte er an einem besonderen Mikroskop, dem Transmissionselektronenmikroskop, unter in-situ-Bedingungen, wie sich die oftmals nanokristalline Mikrostruktur der unmittelbaren Randschicht bei thermischer Beanspruchung verändert. Diese Untersuchungen könnten dazu beitragen, die Randschichten von Metallen für den Hochtemperatureinsatz weiter zu verbessern, sagt Igor Altenberger. Er sei froh, dass er durch das Emmy Noether-Programm die Möglichkeit bekomme, seinen eigenen, in Deutschland einzigartigen Forschungsschwerpunkt aufzubauen, wie Altenberger im Pressedienst der DFG (www.dfg.de/aktuell/pressemitteilungen/neue_programme/presse_2002 _15.html) berichtet. "Ohne diese Perspektive wäre ich vielleicht in die industrielle Forschung gegangen", teilt er dort mit. Er sei dankbar, dass ihm das Emmy Noether-Programm "eine so großzügige finanzielle Ausstattung und eine hohe Eigenverantwortlichkeit" gegeben habe. Er wird ab Juli 2002 eine Nachwuchs-Forschergruppe am Institut für Werkstofftechnik aufbauen, für die er voraussichtlich eine halbe Millionen Euro zur Verfügung haben wird.

Ingrid Hildebrand | Pressemitteilung

Weitere Berichte zu: Ermüdung Metall Randschicht

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?
30.03.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE