Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Effizienz für die Halbleitertechnologie

10.10.2007
Die Photovoltaikbranche wächst weltweit pro Jahr um rund 35 Prozent. Gebremst wird der Aufwärtstrend beim klimafreundlichen Solarstrom jedoch durch den Aufwand bei der Herstellung der Solarzellen sowie durch schwindende Siliziumressourcen.

Will sich die Photovoltaik gegenüber der konventionellen Energieerzeugung durchsetzen, müssen die in industrieller Grossproduktion hergestellten Solarzellen mit geringeren Mengen des kostbaren Siliziums auskommen und trotzdem eine höhere Leistung erbringen. Empa-Forscher testen nun in einem KTI-Projekt zusammen mit einem Industriepartner ein Verfahren zur Verdreifachung der Ausbeute. Ihr Trick: Solarzellen in Scheiben sägen, die statt bisher 300 nur noch 100 Mikrometer dick sind.


Eine herkömmliche Wafer-Scheibe ist 300 Mikrometer dick. Eine optimierte Technik soll es ermöglichen, Siliziumscheiben von nur 100 Mikrometer zu schneiden.

Unseren Energieverbrauch aus erneuerbaren Quellen zu decken, gilt als ein Ausweg aus der globalen Energie- und Klimakrise. Dafür bietet sich das Sonnenlicht geradezu an. In genau einer Stunde und sechs Minuten liefert es so viel Energie, wie die Welt im Jahr 2006 nutzte. Mit Hilfe von Solarzellen, die aus Halbleitern aufgebaut sind, wird ein Bruchteil davon eingefangen und in Elektrizität verwandelt. "Fällt der Begriff Halbleiter, dann denkt jeder an Chips für Laser und Computer, an optische und elektronische Finessen", sagt Johann Michler, Leiter der Empa-Abteilung "Mechanics of Materials and Nanostructures" in Thun. "Dabei sind es Werkstoffingenieure und Maschinenbauer, die Meisterleistungen bei der Herstellung vollbringen". Zum Beispiel aus einem Siliziumkristall von der Grösse eines Felsblocks mit einem Meter Kantenlänge Scheiben zu schneiden, die nur ein viertel Millimeter dick sind. Oder aus solch hauchdünnen Scheiben kleine perfekte Chips zu sägen.

Mehr Oberfläche aus einem Block

... mehr zu:
»Mikrometer »Silizium »Solarzelle »Wafer

Trotz vieler neuer Ansätze, die alternativ zur Siliziumtechnologie entwickelt werden, arbeitet die Industrie bislang fast ausschliesslich mit dem grauen Gold, entweder als amorphes oder kristallines Silizium. Beim Arbeiten mit dem höherwertigen Monokristall besteht die Herausforderung darin, aus dem Siliziumblock möglichst viele Scheiben in kürzester Zeit zu sägen, bei minimalem Abfall. Die Säge, die dafür zum Einsatz kommt, ist ein hauchfeiner Draht, der mehrfach um den Siliziumblock gewickelt wird und so etliche Scheiben gleichzeitig schneidet. Wie lässt sich nun mehr Oberfläche aus einem Block erhalten? Indem die Scheiben dünner geschnitten werden, lautet die Antwort der Empa-Forscher. "Wollen wir diesen Prozess optimieren, müssen wir verstehen, was beim Schneiden passiert", sagt Kilian Wasmer, der das Solarzellen-Projekt betreut. Denn Ausschuss beim Schneiden von Silizium geht schnell ins Geld; 250 Franken kostet ein Kilogramm des Materials. Silizium ist spröde und beim Sägen entstehen feinste, etwa 20 Mikrometer tiefe Risse auf der Oberfläche. Bei den herkömmlichen Scheiben, die 300 Mikrometer dick sind, werden diese Risse auf beiden Seiten abgeätzt. Daher beträgt der Sägeausschuss bisher insgesamt rund 30 Prozent.

Kosten senken durch weniger Ausschuss

Wollen die Forscher die Scheiben dünner machen, müssen sie auch dafür sorgen, dass die Mikrorisse kleiner werden. Eine Verringerung der Risstiefe um die Hälfte, also auf rund 10 Mikrometer, wäre bereits "ein grosser Schritt" so Wasmer. Er und sein Kollege Adrien Bidiville erforschen nun für den Industriepartner HCT, den Hersteller der sogenannten Multidrahtsäge, wie diese Risse entstehen. Dazu erfassen sie zunächst Parameter beim Schneiden, etwa die Grösse der Partikel auf dem Schneiddraht oder die Geschwindigkeit, mit der geschnitten wird. Dann führen sie anhand der ermittelten Daten Modellexperimente durch. Mit Hilfe einer feinen Diamantspitze, dem Nanoindentor, ritzen die Forscher Mikrorisse in die Siliziumscheiben und beobachten deren Entstehung und Ausbreitung minutiös unter dem Elektronenmikroskop. Erst wenn alle Schritte ausgewertet sind, kann Wasmer ein Konzept für die Optimierung erstellen. "Die wirtschaftliche Bedeutung wird beträchtlich sein", ist er sicher. "Immerhin lässt sich ein Drittel der Kosten einsparen."

Neues Know-how für den Industriepartner

Ein ähnliches KTI-Projekt hat Michlers Team gerade beendet, so erfolgreich, dass es von der Förderagentur für Innovation (KTI) in ihrem Jahresbericht als "Success Story" gekürt wurde. Auch dabei ging es um Risse, allerdings nicht in Siliziumscheiben für Solarzellen, sondern in mikroskopischen Bauteilen für Laser. Diese werden aus Galliumarsenid-Scheiben, so genannten Wafers, herausgeschnitten. Sie sind mit einer Breite und Höhe von jeweils 300 Mikrometer und einer Länge von zwei Millimeter so winzig, dass 40 Stück in ein einziges Karo eines Rechenblocks passen. Und mit 150 US-Dollar pro Bauteil so teuer, dass auch hier Ausschuss unerwünscht ist. Doch genau der fiel beim Industriepartner Bookham Switzerland AG, einem Hersteller von Laserdioden, immer dann an, wenn beim Spalten der Galliumarsenid-Wafer die Kanten nicht spiegelglatt gerieten. Bei den Dimensionen der Laser führen schon Verklumpungen einzelner Galliumarsenid-Moleküle zu Unebenheiten, die den perfekten Schnitt zunichte machen. Auch bildeten sich Nanorisse beim Ritzen der Wafer.

Vom Technologietransfer profitieren beide Seiten

Michler und Wasmer untersuchten in einer speziellen Nanospaltapparatur, wie die Risse beim Ritzen des Wafers entstehen. Wie sie es derzeit für das Solarzellenprojekt tun, gingen sie in drei Schritten vor. "Die Lösung des Problems", sagt Michler, "bestand darin, nicht mehr zu ritzen. Stattdessen haben wir die Diamantpyramide wie einen Keil in den Wafer gedrückt und ihn dann gebrochen." Der Industriepartner war beeindruckt. Er konnte dadurch seine Waferspaltmethode optimieren. Als generöses Dankeschön durfte Michlers Abteilung die von Bookham für das Projekt zur Verfügung gestellten Geräte behalten; Instrumente im Wert von einer halben Million Franken. Der Gerätepark kommt weiteren Nanomechanik-Projekten zugute.

Fachliche Informationen:
Dr. Johann Michler, Mechanics of Materials and Nanostructures, Tel. +41 33 228 46 05, johann.michler@empa.ch

Dr. Kilian Wasmer, Werkstofftechnologie, Tel.+41 33 228 29 71, kilian.wasmer@empa.ch

Sabine Voser | idw
Weitere Informationen:
http://www.empa.ch

Weitere Berichte zu: Mikrometer Silizium Solarzelle Wafer

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise