Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Effizienz für die Halbleitertechnologie

10.10.2007
Die Photovoltaikbranche wächst weltweit pro Jahr um rund 35 Prozent. Gebremst wird der Aufwärtstrend beim klimafreundlichen Solarstrom jedoch durch den Aufwand bei der Herstellung der Solarzellen sowie durch schwindende Siliziumressourcen.

Will sich die Photovoltaik gegenüber der konventionellen Energieerzeugung durchsetzen, müssen die in industrieller Grossproduktion hergestellten Solarzellen mit geringeren Mengen des kostbaren Siliziums auskommen und trotzdem eine höhere Leistung erbringen. Empa-Forscher testen nun in einem KTI-Projekt zusammen mit einem Industriepartner ein Verfahren zur Verdreifachung der Ausbeute. Ihr Trick: Solarzellen in Scheiben sägen, die statt bisher 300 nur noch 100 Mikrometer dick sind.


Eine herkömmliche Wafer-Scheibe ist 300 Mikrometer dick. Eine optimierte Technik soll es ermöglichen, Siliziumscheiben von nur 100 Mikrometer zu schneiden.

Unseren Energieverbrauch aus erneuerbaren Quellen zu decken, gilt als ein Ausweg aus der globalen Energie- und Klimakrise. Dafür bietet sich das Sonnenlicht geradezu an. In genau einer Stunde und sechs Minuten liefert es so viel Energie, wie die Welt im Jahr 2006 nutzte. Mit Hilfe von Solarzellen, die aus Halbleitern aufgebaut sind, wird ein Bruchteil davon eingefangen und in Elektrizität verwandelt. "Fällt der Begriff Halbleiter, dann denkt jeder an Chips für Laser und Computer, an optische und elektronische Finessen", sagt Johann Michler, Leiter der Empa-Abteilung "Mechanics of Materials and Nanostructures" in Thun. "Dabei sind es Werkstoffingenieure und Maschinenbauer, die Meisterleistungen bei der Herstellung vollbringen". Zum Beispiel aus einem Siliziumkristall von der Grösse eines Felsblocks mit einem Meter Kantenlänge Scheiben zu schneiden, die nur ein viertel Millimeter dick sind. Oder aus solch hauchdünnen Scheiben kleine perfekte Chips zu sägen.

Mehr Oberfläche aus einem Block

... mehr zu:
»Mikrometer »Silizium »Solarzelle »Wafer

Trotz vieler neuer Ansätze, die alternativ zur Siliziumtechnologie entwickelt werden, arbeitet die Industrie bislang fast ausschliesslich mit dem grauen Gold, entweder als amorphes oder kristallines Silizium. Beim Arbeiten mit dem höherwertigen Monokristall besteht die Herausforderung darin, aus dem Siliziumblock möglichst viele Scheiben in kürzester Zeit zu sägen, bei minimalem Abfall. Die Säge, die dafür zum Einsatz kommt, ist ein hauchfeiner Draht, der mehrfach um den Siliziumblock gewickelt wird und so etliche Scheiben gleichzeitig schneidet. Wie lässt sich nun mehr Oberfläche aus einem Block erhalten? Indem die Scheiben dünner geschnitten werden, lautet die Antwort der Empa-Forscher. "Wollen wir diesen Prozess optimieren, müssen wir verstehen, was beim Schneiden passiert", sagt Kilian Wasmer, der das Solarzellen-Projekt betreut. Denn Ausschuss beim Schneiden von Silizium geht schnell ins Geld; 250 Franken kostet ein Kilogramm des Materials. Silizium ist spröde und beim Sägen entstehen feinste, etwa 20 Mikrometer tiefe Risse auf der Oberfläche. Bei den herkömmlichen Scheiben, die 300 Mikrometer dick sind, werden diese Risse auf beiden Seiten abgeätzt. Daher beträgt der Sägeausschuss bisher insgesamt rund 30 Prozent.

Kosten senken durch weniger Ausschuss

Wollen die Forscher die Scheiben dünner machen, müssen sie auch dafür sorgen, dass die Mikrorisse kleiner werden. Eine Verringerung der Risstiefe um die Hälfte, also auf rund 10 Mikrometer, wäre bereits "ein grosser Schritt" so Wasmer. Er und sein Kollege Adrien Bidiville erforschen nun für den Industriepartner HCT, den Hersteller der sogenannten Multidrahtsäge, wie diese Risse entstehen. Dazu erfassen sie zunächst Parameter beim Schneiden, etwa die Grösse der Partikel auf dem Schneiddraht oder die Geschwindigkeit, mit der geschnitten wird. Dann führen sie anhand der ermittelten Daten Modellexperimente durch. Mit Hilfe einer feinen Diamantspitze, dem Nanoindentor, ritzen die Forscher Mikrorisse in die Siliziumscheiben und beobachten deren Entstehung und Ausbreitung minutiös unter dem Elektronenmikroskop. Erst wenn alle Schritte ausgewertet sind, kann Wasmer ein Konzept für die Optimierung erstellen. "Die wirtschaftliche Bedeutung wird beträchtlich sein", ist er sicher. "Immerhin lässt sich ein Drittel der Kosten einsparen."

Neues Know-how für den Industriepartner

Ein ähnliches KTI-Projekt hat Michlers Team gerade beendet, so erfolgreich, dass es von der Förderagentur für Innovation (KTI) in ihrem Jahresbericht als "Success Story" gekürt wurde. Auch dabei ging es um Risse, allerdings nicht in Siliziumscheiben für Solarzellen, sondern in mikroskopischen Bauteilen für Laser. Diese werden aus Galliumarsenid-Scheiben, so genannten Wafers, herausgeschnitten. Sie sind mit einer Breite und Höhe von jeweils 300 Mikrometer und einer Länge von zwei Millimeter so winzig, dass 40 Stück in ein einziges Karo eines Rechenblocks passen. Und mit 150 US-Dollar pro Bauteil so teuer, dass auch hier Ausschuss unerwünscht ist. Doch genau der fiel beim Industriepartner Bookham Switzerland AG, einem Hersteller von Laserdioden, immer dann an, wenn beim Spalten der Galliumarsenid-Wafer die Kanten nicht spiegelglatt gerieten. Bei den Dimensionen der Laser führen schon Verklumpungen einzelner Galliumarsenid-Moleküle zu Unebenheiten, die den perfekten Schnitt zunichte machen. Auch bildeten sich Nanorisse beim Ritzen der Wafer.

Vom Technologietransfer profitieren beide Seiten

Michler und Wasmer untersuchten in einer speziellen Nanospaltapparatur, wie die Risse beim Ritzen des Wafers entstehen. Wie sie es derzeit für das Solarzellenprojekt tun, gingen sie in drei Schritten vor. "Die Lösung des Problems", sagt Michler, "bestand darin, nicht mehr zu ritzen. Stattdessen haben wir die Diamantpyramide wie einen Keil in den Wafer gedrückt und ihn dann gebrochen." Der Industriepartner war beeindruckt. Er konnte dadurch seine Waferspaltmethode optimieren. Als generöses Dankeschön durfte Michlers Abteilung die von Bookham für das Projekt zur Verfügung gestellten Geräte behalten; Instrumente im Wert von einer halben Million Franken. Der Gerätepark kommt weiteren Nanomechanik-Projekten zugute.

Fachliche Informationen:
Dr. Johann Michler, Mechanics of Materials and Nanostructures, Tel. +41 33 228 46 05, johann.michler@empa.ch

Dr. Kilian Wasmer, Werkstofftechnologie, Tel.+41 33 228 29 71, kilian.wasmer@empa.ch

Sabine Voser | idw
Weitere Informationen:
http://www.empa.ch

Weitere Berichte zu: Mikrometer Silizium Solarzelle Wafer

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

nachricht Additiv gefertigte Verklammerungsstrukturen verbessern Schichthaftung und Anbindung
19.01.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie