Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Effizienz für die Halbleitertechnologie

10.10.2007
Die Photovoltaikbranche wächst weltweit pro Jahr um rund 35 Prozent. Gebremst wird der Aufwärtstrend beim klimafreundlichen Solarstrom jedoch durch den Aufwand bei der Herstellung der Solarzellen sowie durch schwindende Siliziumressourcen.

Will sich die Photovoltaik gegenüber der konventionellen Energieerzeugung durchsetzen, müssen die in industrieller Grossproduktion hergestellten Solarzellen mit geringeren Mengen des kostbaren Siliziums auskommen und trotzdem eine höhere Leistung erbringen. Empa-Forscher testen nun in einem KTI-Projekt zusammen mit einem Industriepartner ein Verfahren zur Verdreifachung der Ausbeute. Ihr Trick: Solarzellen in Scheiben sägen, die statt bisher 300 nur noch 100 Mikrometer dick sind.


Eine herkömmliche Wafer-Scheibe ist 300 Mikrometer dick. Eine optimierte Technik soll es ermöglichen, Siliziumscheiben von nur 100 Mikrometer zu schneiden.

Unseren Energieverbrauch aus erneuerbaren Quellen zu decken, gilt als ein Ausweg aus der globalen Energie- und Klimakrise. Dafür bietet sich das Sonnenlicht geradezu an. In genau einer Stunde und sechs Minuten liefert es so viel Energie, wie die Welt im Jahr 2006 nutzte. Mit Hilfe von Solarzellen, die aus Halbleitern aufgebaut sind, wird ein Bruchteil davon eingefangen und in Elektrizität verwandelt. "Fällt der Begriff Halbleiter, dann denkt jeder an Chips für Laser und Computer, an optische und elektronische Finessen", sagt Johann Michler, Leiter der Empa-Abteilung "Mechanics of Materials and Nanostructures" in Thun. "Dabei sind es Werkstoffingenieure und Maschinenbauer, die Meisterleistungen bei der Herstellung vollbringen". Zum Beispiel aus einem Siliziumkristall von der Grösse eines Felsblocks mit einem Meter Kantenlänge Scheiben zu schneiden, die nur ein viertel Millimeter dick sind. Oder aus solch hauchdünnen Scheiben kleine perfekte Chips zu sägen.

Mehr Oberfläche aus einem Block

... mehr zu:
»Mikrometer »Silizium »Solarzelle »Wafer

Trotz vieler neuer Ansätze, die alternativ zur Siliziumtechnologie entwickelt werden, arbeitet die Industrie bislang fast ausschliesslich mit dem grauen Gold, entweder als amorphes oder kristallines Silizium. Beim Arbeiten mit dem höherwertigen Monokristall besteht die Herausforderung darin, aus dem Siliziumblock möglichst viele Scheiben in kürzester Zeit zu sägen, bei minimalem Abfall. Die Säge, die dafür zum Einsatz kommt, ist ein hauchfeiner Draht, der mehrfach um den Siliziumblock gewickelt wird und so etliche Scheiben gleichzeitig schneidet. Wie lässt sich nun mehr Oberfläche aus einem Block erhalten? Indem die Scheiben dünner geschnitten werden, lautet die Antwort der Empa-Forscher. "Wollen wir diesen Prozess optimieren, müssen wir verstehen, was beim Schneiden passiert", sagt Kilian Wasmer, der das Solarzellen-Projekt betreut. Denn Ausschuss beim Schneiden von Silizium geht schnell ins Geld; 250 Franken kostet ein Kilogramm des Materials. Silizium ist spröde und beim Sägen entstehen feinste, etwa 20 Mikrometer tiefe Risse auf der Oberfläche. Bei den herkömmlichen Scheiben, die 300 Mikrometer dick sind, werden diese Risse auf beiden Seiten abgeätzt. Daher beträgt der Sägeausschuss bisher insgesamt rund 30 Prozent.

Kosten senken durch weniger Ausschuss

Wollen die Forscher die Scheiben dünner machen, müssen sie auch dafür sorgen, dass die Mikrorisse kleiner werden. Eine Verringerung der Risstiefe um die Hälfte, also auf rund 10 Mikrometer, wäre bereits "ein grosser Schritt" so Wasmer. Er und sein Kollege Adrien Bidiville erforschen nun für den Industriepartner HCT, den Hersteller der sogenannten Multidrahtsäge, wie diese Risse entstehen. Dazu erfassen sie zunächst Parameter beim Schneiden, etwa die Grösse der Partikel auf dem Schneiddraht oder die Geschwindigkeit, mit der geschnitten wird. Dann führen sie anhand der ermittelten Daten Modellexperimente durch. Mit Hilfe einer feinen Diamantspitze, dem Nanoindentor, ritzen die Forscher Mikrorisse in die Siliziumscheiben und beobachten deren Entstehung und Ausbreitung minutiös unter dem Elektronenmikroskop. Erst wenn alle Schritte ausgewertet sind, kann Wasmer ein Konzept für die Optimierung erstellen. "Die wirtschaftliche Bedeutung wird beträchtlich sein", ist er sicher. "Immerhin lässt sich ein Drittel der Kosten einsparen."

Neues Know-how für den Industriepartner

Ein ähnliches KTI-Projekt hat Michlers Team gerade beendet, so erfolgreich, dass es von der Förderagentur für Innovation (KTI) in ihrem Jahresbericht als "Success Story" gekürt wurde. Auch dabei ging es um Risse, allerdings nicht in Siliziumscheiben für Solarzellen, sondern in mikroskopischen Bauteilen für Laser. Diese werden aus Galliumarsenid-Scheiben, so genannten Wafers, herausgeschnitten. Sie sind mit einer Breite und Höhe von jeweils 300 Mikrometer und einer Länge von zwei Millimeter so winzig, dass 40 Stück in ein einziges Karo eines Rechenblocks passen. Und mit 150 US-Dollar pro Bauteil so teuer, dass auch hier Ausschuss unerwünscht ist. Doch genau der fiel beim Industriepartner Bookham Switzerland AG, einem Hersteller von Laserdioden, immer dann an, wenn beim Spalten der Galliumarsenid-Wafer die Kanten nicht spiegelglatt gerieten. Bei den Dimensionen der Laser führen schon Verklumpungen einzelner Galliumarsenid-Moleküle zu Unebenheiten, die den perfekten Schnitt zunichte machen. Auch bildeten sich Nanorisse beim Ritzen der Wafer.

Vom Technologietransfer profitieren beide Seiten

Michler und Wasmer untersuchten in einer speziellen Nanospaltapparatur, wie die Risse beim Ritzen des Wafers entstehen. Wie sie es derzeit für das Solarzellenprojekt tun, gingen sie in drei Schritten vor. "Die Lösung des Problems", sagt Michler, "bestand darin, nicht mehr zu ritzen. Stattdessen haben wir die Diamantpyramide wie einen Keil in den Wafer gedrückt und ihn dann gebrochen." Der Industriepartner war beeindruckt. Er konnte dadurch seine Waferspaltmethode optimieren. Als generöses Dankeschön durfte Michlers Abteilung die von Bookham für das Projekt zur Verfügung gestellten Geräte behalten; Instrumente im Wert von einer halben Million Franken. Der Gerätepark kommt weiteren Nanomechanik-Projekten zugute.

Fachliche Informationen:
Dr. Johann Michler, Mechanics of Materials and Nanostructures, Tel. +41 33 228 46 05, johann.michler@empa.ch

Dr. Kilian Wasmer, Werkstofftechnologie, Tel.+41 33 228 29 71, kilian.wasmer@empa.ch

Sabine Voser | idw
Weitere Informationen:
http://www.empa.ch

Weitere Berichte zu: Mikrometer Silizium Solarzelle Wafer

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Perowskit-Solarzellen: Es muss gar nicht perfekt sein
15.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Fraunhofer IMWS testet umweltfreundliche Mikroplastik-Alternativen in Kosmetikartikeln
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften