Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Effizienz für die Halbleitertechnologie

10.10.2007
Die Photovoltaikbranche wächst weltweit pro Jahr um rund 35 Prozent. Gebremst wird der Aufwärtstrend beim klimafreundlichen Solarstrom jedoch durch den Aufwand bei der Herstellung der Solarzellen sowie durch schwindende Siliziumressourcen.

Will sich die Photovoltaik gegenüber der konventionellen Energieerzeugung durchsetzen, müssen die in industrieller Grossproduktion hergestellten Solarzellen mit geringeren Mengen des kostbaren Siliziums auskommen und trotzdem eine höhere Leistung erbringen. Empa-Forscher testen nun in einem KTI-Projekt zusammen mit einem Industriepartner ein Verfahren zur Verdreifachung der Ausbeute. Ihr Trick: Solarzellen in Scheiben sägen, die statt bisher 300 nur noch 100 Mikrometer dick sind.


Eine herkömmliche Wafer-Scheibe ist 300 Mikrometer dick. Eine optimierte Technik soll es ermöglichen, Siliziumscheiben von nur 100 Mikrometer zu schneiden.

Unseren Energieverbrauch aus erneuerbaren Quellen zu decken, gilt als ein Ausweg aus der globalen Energie- und Klimakrise. Dafür bietet sich das Sonnenlicht geradezu an. In genau einer Stunde und sechs Minuten liefert es so viel Energie, wie die Welt im Jahr 2006 nutzte. Mit Hilfe von Solarzellen, die aus Halbleitern aufgebaut sind, wird ein Bruchteil davon eingefangen und in Elektrizität verwandelt. "Fällt der Begriff Halbleiter, dann denkt jeder an Chips für Laser und Computer, an optische und elektronische Finessen", sagt Johann Michler, Leiter der Empa-Abteilung "Mechanics of Materials and Nanostructures" in Thun. "Dabei sind es Werkstoffingenieure und Maschinenbauer, die Meisterleistungen bei der Herstellung vollbringen". Zum Beispiel aus einem Siliziumkristall von der Grösse eines Felsblocks mit einem Meter Kantenlänge Scheiben zu schneiden, die nur ein viertel Millimeter dick sind. Oder aus solch hauchdünnen Scheiben kleine perfekte Chips zu sägen.

Mehr Oberfläche aus einem Block

... mehr zu:
»Mikrometer »Silizium »Solarzelle »Wafer

Trotz vieler neuer Ansätze, die alternativ zur Siliziumtechnologie entwickelt werden, arbeitet die Industrie bislang fast ausschliesslich mit dem grauen Gold, entweder als amorphes oder kristallines Silizium. Beim Arbeiten mit dem höherwertigen Monokristall besteht die Herausforderung darin, aus dem Siliziumblock möglichst viele Scheiben in kürzester Zeit zu sägen, bei minimalem Abfall. Die Säge, die dafür zum Einsatz kommt, ist ein hauchfeiner Draht, der mehrfach um den Siliziumblock gewickelt wird und so etliche Scheiben gleichzeitig schneidet. Wie lässt sich nun mehr Oberfläche aus einem Block erhalten? Indem die Scheiben dünner geschnitten werden, lautet die Antwort der Empa-Forscher. "Wollen wir diesen Prozess optimieren, müssen wir verstehen, was beim Schneiden passiert", sagt Kilian Wasmer, der das Solarzellen-Projekt betreut. Denn Ausschuss beim Schneiden von Silizium geht schnell ins Geld; 250 Franken kostet ein Kilogramm des Materials. Silizium ist spröde und beim Sägen entstehen feinste, etwa 20 Mikrometer tiefe Risse auf der Oberfläche. Bei den herkömmlichen Scheiben, die 300 Mikrometer dick sind, werden diese Risse auf beiden Seiten abgeätzt. Daher beträgt der Sägeausschuss bisher insgesamt rund 30 Prozent.

Kosten senken durch weniger Ausschuss

Wollen die Forscher die Scheiben dünner machen, müssen sie auch dafür sorgen, dass die Mikrorisse kleiner werden. Eine Verringerung der Risstiefe um die Hälfte, also auf rund 10 Mikrometer, wäre bereits "ein grosser Schritt" so Wasmer. Er und sein Kollege Adrien Bidiville erforschen nun für den Industriepartner HCT, den Hersteller der sogenannten Multidrahtsäge, wie diese Risse entstehen. Dazu erfassen sie zunächst Parameter beim Schneiden, etwa die Grösse der Partikel auf dem Schneiddraht oder die Geschwindigkeit, mit der geschnitten wird. Dann führen sie anhand der ermittelten Daten Modellexperimente durch. Mit Hilfe einer feinen Diamantspitze, dem Nanoindentor, ritzen die Forscher Mikrorisse in die Siliziumscheiben und beobachten deren Entstehung und Ausbreitung minutiös unter dem Elektronenmikroskop. Erst wenn alle Schritte ausgewertet sind, kann Wasmer ein Konzept für die Optimierung erstellen. "Die wirtschaftliche Bedeutung wird beträchtlich sein", ist er sicher. "Immerhin lässt sich ein Drittel der Kosten einsparen."

Neues Know-how für den Industriepartner

Ein ähnliches KTI-Projekt hat Michlers Team gerade beendet, so erfolgreich, dass es von der Förderagentur für Innovation (KTI) in ihrem Jahresbericht als "Success Story" gekürt wurde. Auch dabei ging es um Risse, allerdings nicht in Siliziumscheiben für Solarzellen, sondern in mikroskopischen Bauteilen für Laser. Diese werden aus Galliumarsenid-Scheiben, so genannten Wafers, herausgeschnitten. Sie sind mit einer Breite und Höhe von jeweils 300 Mikrometer und einer Länge von zwei Millimeter so winzig, dass 40 Stück in ein einziges Karo eines Rechenblocks passen. Und mit 150 US-Dollar pro Bauteil so teuer, dass auch hier Ausschuss unerwünscht ist. Doch genau der fiel beim Industriepartner Bookham Switzerland AG, einem Hersteller von Laserdioden, immer dann an, wenn beim Spalten der Galliumarsenid-Wafer die Kanten nicht spiegelglatt gerieten. Bei den Dimensionen der Laser führen schon Verklumpungen einzelner Galliumarsenid-Moleküle zu Unebenheiten, die den perfekten Schnitt zunichte machen. Auch bildeten sich Nanorisse beim Ritzen der Wafer.

Vom Technologietransfer profitieren beide Seiten

Michler und Wasmer untersuchten in einer speziellen Nanospaltapparatur, wie die Risse beim Ritzen des Wafers entstehen. Wie sie es derzeit für das Solarzellenprojekt tun, gingen sie in drei Schritten vor. "Die Lösung des Problems", sagt Michler, "bestand darin, nicht mehr zu ritzen. Stattdessen haben wir die Diamantpyramide wie einen Keil in den Wafer gedrückt und ihn dann gebrochen." Der Industriepartner war beeindruckt. Er konnte dadurch seine Waferspaltmethode optimieren. Als generöses Dankeschön durfte Michlers Abteilung die von Bookham für das Projekt zur Verfügung gestellten Geräte behalten; Instrumente im Wert von einer halben Million Franken. Der Gerätepark kommt weiteren Nanomechanik-Projekten zugute.

Fachliche Informationen:
Dr. Johann Michler, Mechanics of Materials and Nanostructures, Tel. +41 33 228 46 05, johann.michler@empa.ch

Dr. Kilian Wasmer, Werkstofftechnologie, Tel.+41 33 228 29 71, kilian.wasmer@empa.ch

Sabine Voser | idw
Weitere Informationen:
http://www.empa.ch

Weitere Berichte zu: Mikrometer Silizium Solarzelle Wafer

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kunststoffstrang statt gefräster Facette: neue Methode zur Verbindung von Brillenglas und -fassung
28.04.2017 | Technische Hochschule Köln

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie