Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanische Eigenschaften biologischer Nanomaterialien entschlüsselt

09.10.2007
Durchbruch für Medizin und Materialforschung

Große Fortschritte bei der Entwicklung neuer, multifunktionaler Materialien, aber auch für das Verständnis von Krankheiten wie Alzheimer versprechen Untersuchungen im Rahmen eines Kooperationsprogramms zwischen dem Institut für Angewandte und Experimentelle Mechanik der Uni Stuttgart und dem Massachusetts Institute of Technology (MIT): Erstmals ist es den Wissenschaftlern gelungen, mit Hilfe von atomistischen Berechnungen fundamentale Bruchmechanismen von biologischen Materialien zu erklären.

Darauf aufbauend entwickelten sie eine Theorie, die es ermöglicht, die Festigkeit und Robustheit von biologischen Nanostrukturen vorherzusagen. Über die Arbeit wird die renommierte amerikanische Fachzeitschrift "Proceedings of the National Academy of Sciences" als Titelthema ihrer Ausgabe 42 vom 16. Oktober berichten.*)

Warum ist Spinnenseide stärker als Stahl? Was macht Knochen so fest und verformbar zugleich? Wieso können Zellen auf ein vielfaches ihrer ursprünglichen Länge reversibel verformt werden? Und welche molekularen Mechanismen führen zu mechanischen Fehlfunktionen von Proteinen, was bei Krankheiten wie Alzheimer, vorzeitiger Alterung oder degenerativen Muskelerkrankungen eine zentrale Rolle spielt? Die Ursache all dieser Phänomene sind intelligente, multifunktionale biologische Nanostrukturen.

Die Eigenschaften dieser Strukturen wollen die Wissenschaftler entschlüsseln, um sie in Form neuer Materialien für den Menschen nutzbar zu machen oder auf neuen Wegen genetische Krankheiten zu heilen. Dabei verfolgt die Gruppe um Projektleiter Prof. Markus Buehler vom MIT und Theodor Ackbarow, Austauschstudent der Uni Stuttgart am MIT, einen Ansatz, bei dem das mechanische Verhalten auf atomarer Ebene durch Simulationen auf Hochleistungscomputern untersucht wird und Rückschlüsse auf makroskopische Beobachtung gezogen werden.

Dabei ist jetzt ein Durchbruch gelungen. Zum ersten Mal konnten auf atomarer Ebene Deformationsmechanismen von Proteinmaterialien im Cytoskelett der Zelle und in Amyloid-Fasern, wie sie bei Alzheimer vorkommen, erklärt werden. "Das Besondere an biologischen Proteinmaterialien ist, dass sie meist aus sehr 'weichen' Wasserstoffbrückenbindungen aufgebaut sind", erklärt Ackbarow.

Dennoch erreichen biologische Materialien hohe Festigkeiten, ähnlich derer von Glas oder Stahl. Die Forschungsergebnisse zeigen, dass die Existenz von hierarchischen Materialstrukturen von Nano zu Makro der Schlüssel zum Erreichen dieser außergewöhnlichen Eigenschaften ist. Die hierarchischen Strukturen erlau-ben es, scheinbar widersprüchliche Materialeigenschaften wie Festigkeit und Robustheit oder Selbstheilung und Selbstadaptation miteinander zu vereinen und zudem die schwachen chemischen Bindungen zu verstärken. Dadurch ist es möglich, trotz schwacher chemischer Bindungen belastbare, sich ständig an die Umgebung anpassende Materialien zu erzeugen. "Wir konnten nachweisen, wie in biologischen Materialien Hierarchien als eine weitere Designvariable verwendet werden, um den Konflikt zwischen Robustheit und Festigkeit, der in synthetischen Materialien vor-liegt, aufzuheben", so Prof. Buehler. "Dies eröffnet neue Wege zur Materialsynthese und wird zum Verständnis vieler Krankheiten beitragen."

Vorhersage für mechanische Eigenschaften von Proteinstrukturen

Die Forscher haben beobachtet, dass aufgrund der hierarchischen Struktur je nach Verformungsgeschwindigkeit verschiedene Deformations- und Bruchmechanismen auftreten. Wenn sich zum Beispiel eine Zelle aktiv verformt, treten Mechanismen auf, die dafür sorgen, dass das Gewebe weich bleibt und somit die Verformungen unter minimalem Energieauf-wand möglich sind. Wirkt hingegen eine Schocklast auf das Gewebe ein, werden andere Bruchmechanismen aktiviert, die zu einer lokalen Verfestigung des Materials führen. Aufbauend auf diesen Erkenntnissen konnten die Forscher erstmals ein Festigkeitsmodell entwickeln, das es ermöglicht, ausschließlich aufgrund der Eigenschaften der chemischen Verbindungen und der Geometrie der Moleküle die mechanischen Eigenschaften von Proteinstrukturen vorherzusagen. Das ist der erste Schritt, um biologische Materialien zu entwickeln, die sich nicht nur selbst einer Belastung anpassen oder sich selbst regenerieren können, sondern auch bei moderaten Temperaturen herzustellen sind.

Die Ergebnisse entstanden im Rahmen einer Kooperation zwischen dem Institut für Angewandte und Experimentelle Mechanik der Uni Stuttgart (Leitung Prof. Lothar Gaul) und dem MIT Laboratory for Atomistic and Mo-lecular Modeling von Prof. Markus Buehler, der selbst an der Universität Stuttgart studierte und promovierte. Dipl.-Ing. Theodor Ackbarow, der bis Juli 2007 an der Uni Stuttgart Technologiemanagement studierte, leistete wesentliche Beiträge an der Planung, Durchführung und Auswertung der virtuellen Experimente sowie an der Entwicklung der Festigkeitstheorie.

*)Theodor Ackbarow, Xuefeng Chen, Sinan Keten, Markus J. Buehler: "Hierar-chies, multiple energy barriers and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains", Proc . Nat'l Academy of Sciences USA, Vol. 104 (42), pp. 16410-16415, 2007.

Weitere Informationen bei Prof. Markus Buehler, MIT, e-mail mbuehler@MIT.EDU, sowie bei Dipl.-Ing. Theodor Ackbarow (in Germany), Tel. 08531/31173, Mobil: 0176/700 52 123, e-mail: ackbarow@MIT.EDU.

Ursula Zitzler | idw
Weitere Informationen:
http://www.pnas.org/papbyrecent.shtml

Weitere Berichte zu: Alzheimer Bruchmechanismen Festigkeit Robustheit

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie