Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanische Eigenschaften biologischer Nanomaterialien entschlüsselt

09.10.2007
Durchbruch für Medizin und Materialforschung

Große Fortschritte bei der Entwicklung neuer, multifunktionaler Materialien, aber auch für das Verständnis von Krankheiten wie Alzheimer versprechen Untersuchungen im Rahmen eines Kooperationsprogramms zwischen dem Institut für Angewandte und Experimentelle Mechanik der Uni Stuttgart und dem Massachusetts Institute of Technology (MIT): Erstmals ist es den Wissenschaftlern gelungen, mit Hilfe von atomistischen Berechnungen fundamentale Bruchmechanismen von biologischen Materialien zu erklären.

Darauf aufbauend entwickelten sie eine Theorie, die es ermöglicht, die Festigkeit und Robustheit von biologischen Nanostrukturen vorherzusagen. Über die Arbeit wird die renommierte amerikanische Fachzeitschrift "Proceedings of the National Academy of Sciences" als Titelthema ihrer Ausgabe 42 vom 16. Oktober berichten.*)

Warum ist Spinnenseide stärker als Stahl? Was macht Knochen so fest und verformbar zugleich? Wieso können Zellen auf ein vielfaches ihrer ursprünglichen Länge reversibel verformt werden? Und welche molekularen Mechanismen führen zu mechanischen Fehlfunktionen von Proteinen, was bei Krankheiten wie Alzheimer, vorzeitiger Alterung oder degenerativen Muskelerkrankungen eine zentrale Rolle spielt? Die Ursache all dieser Phänomene sind intelligente, multifunktionale biologische Nanostrukturen.

Die Eigenschaften dieser Strukturen wollen die Wissenschaftler entschlüsseln, um sie in Form neuer Materialien für den Menschen nutzbar zu machen oder auf neuen Wegen genetische Krankheiten zu heilen. Dabei verfolgt die Gruppe um Projektleiter Prof. Markus Buehler vom MIT und Theodor Ackbarow, Austauschstudent der Uni Stuttgart am MIT, einen Ansatz, bei dem das mechanische Verhalten auf atomarer Ebene durch Simulationen auf Hochleistungscomputern untersucht wird und Rückschlüsse auf makroskopische Beobachtung gezogen werden.

Dabei ist jetzt ein Durchbruch gelungen. Zum ersten Mal konnten auf atomarer Ebene Deformationsmechanismen von Proteinmaterialien im Cytoskelett der Zelle und in Amyloid-Fasern, wie sie bei Alzheimer vorkommen, erklärt werden. "Das Besondere an biologischen Proteinmaterialien ist, dass sie meist aus sehr 'weichen' Wasserstoffbrückenbindungen aufgebaut sind", erklärt Ackbarow.

Dennoch erreichen biologische Materialien hohe Festigkeiten, ähnlich derer von Glas oder Stahl. Die Forschungsergebnisse zeigen, dass die Existenz von hierarchischen Materialstrukturen von Nano zu Makro der Schlüssel zum Erreichen dieser außergewöhnlichen Eigenschaften ist. Die hierarchischen Strukturen erlau-ben es, scheinbar widersprüchliche Materialeigenschaften wie Festigkeit und Robustheit oder Selbstheilung und Selbstadaptation miteinander zu vereinen und zudem die schwachen chemischen Bindungen zu verstärken. Dadurch ist es möglich, trotz schwacher chemischer Bindungen belastbare, sich ständig an die Umgebung anpassende Materialien zu erzeugen. "Wir konnten nachweisen, wie in biologischen Materialien Hierarchien als eine weitere Designvariable verwendet werden, um den Konflikt zwischen Robustheit und Festigkeit, der in synthetischen Materialien vor-liegt, aufzuheben", so Prof. Buehler. "Dies eröffnet neue Wege zur Materialsynthese und wird zum Verständnis vieler Krankheiten beitragen."

Vorhersage für mechanische Eigenschaften von Proteinstrukturen

Die Forscher haben beobachtet, dass aufgrund der hierarchischen Struktur je nach Verformungsgeschwindigkeit verschiedene Deformations- und Bruchmechanismen auftreten. Wenn sich zum Beispiel eine Zelle aktiv verformt, treten Mechanismen auf, die dafür sorgen, dass das Gewebe weich bleibt und somit die Verformungen unter minimalem Energieauf-wand möglich sind. Wirkt hingegen eine Schocklast auf das Gewebe ein, werden andere Bruchmechanismen aktiviert, die zu einer lokalen Verfestigung des Materials führen. Aufbauend auf diesen Erkenntnissen konnten die Forscher erstmals ein Festigkeitsmodell entwickeln, das es ermöglicht, ausschließlich aufgrund der Eigenschaften der chemischen Verbindungen und der Geometrie der Moleküle die mechanischen Eigenschaften von Proteinstrukturen vorherzusagen. Das ist der erste Schritt, um biologische Materialien zu entwickeln, die sich nicht nur selbst einer Belastung anpassen oder sich selbst regenerieren können, sondern auch bei moderaten Temperaturen herzustellen sind.

Die Ergebnisse entstanden im Rahmen einer Kooperation zwischen dem Institut für Angewandte und Experimentelle Mechanik der Uni Stuttgart (Leitung Prof. Lothar Gaul) und dem MIT Laboratory for Atomistic and Mo-lecular Modeling von Prof. Markus Buehler, der selbst an der Universität Stuttgart studierte und promovierte. Dipl.-Ing. Theodor Ackbarow, der bis Juli 2007 an der Uni Stuttgart Technologiemanagement studierte, leistete wesentliche Beiträge an der Planung, Durchführung und Auswertung der virtuellen Experimente sowie an der Entwicklung der Festigkeitstheorie.

*)Theodor Ackbarow, Xuefeng Chen, Sinan Keten, Markus J. Buehler: "Hierar-chies, multiple energy barriers and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains", Proc . Nat'l Academy of Sciences USA, Vol. 104 (42), pp. 16410-16415, 2007.

Weitere Informationen bei Prof. Markus Buehler, MIT, e-mail mbuehler@MIT.EDU, sowie bei Dipl.-Ing. Theodor Ackbarow (in Germany), Tel. 08531/31173, Mobil: 0176/700 52 123, e-mail: ackbarow@MIT.EDU.

Ursula Zitzler | idw
Weitere Informationen:
http://www.pnas.org/papbyrecent.shtml

Weitere Berichte zu: Alzheimer Bruchmechanismen Festigkeit Robustheit

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit