Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Geheimnis des Glasübergangs auf der Spur: Wissenschafter der TU Graz sind Wegbereiter für neue Hochleistungsmaterialien

06.09.2007
US-Zeitschrift veröffentlicht Ergebnisse der TU-Forscher

Gläser sind im täglichen Leben eher als Trinkbehälter oder als flache Scheiben in Fenstern bekannt. Tatsächlich aber ist aus physikalischer Sicht die Gruppe der Gläser weit vielfältiger: Sie umfasst Festkörper mit außergewöhnlichen Eigenschaften, bei denen der flüssige Zustand eingefroren ist.

Physikern des Instituts für Materialphysik der TU Graz ist es nun in Zusammenarbeit mit deutschen und chinesischen Wissenschaftern gelungen, einen wichtigen Beitrag zur Aufklärung der Mechanismen des so genannten Glasübergangs - des Übergangs vom amorphen, also strukturlosen Festkörper in den Zustand der unterkühlten Schmelze - zu leisten.

Die renommierte amerikanischen Fachzeitschrift "Proceedings of the National Academy of Sciences" veröffentlichte die Ergebnisse, die große Praxisrelevanz versprechen.

Ob für die Medizintechnik, Sportgeräte oder moderne Hochleistungsstähle: Immer mehr Metalle lassen sich in den amorphen Zustand bringen. Damit zählen sie zu den "metallischen Gläsern", deren ungeordnete Strukturen außergewöhnliche mechanische und magnetische Eigenschaften besitzen sowie hohe Korrosionsbeständigkeit aufweisen. "Der so genannte Glasübergang in diesen Festkörpern ist von enormer Bedeutung für die Beschaffenheit der Materialien, Wissen über diesen Vorgang daher von zentraler Bedeutung für mögliche Anwendungen", erläutert Projektleiter Wolfgang Sprengel vom Institut für Materialphysik der TU Graz.

"Beim Glasübergang ändern sich die mechanischen Materialeigenschaften rapide mit der Temperatur", erklärt der Wissenschafter. "Aus unseren neuesten Untersuchungen können wir schließen, dass sich metallische Gläser in der Nähe des Glasübergangs ähnlich verhalten wie kristalline Metalle bei Erwärmung: Sie sind wesentlich von der Einführung freier atomarer Plätze bei höheren Temperaturen bestimmt, die bei Absenkung der Temperatur wieder verschwinden", so Sprengel.

Ausgedehnt gemessenes Glas

Der Nachweis gelang den Forschern, die mit Wissenschaftern der Universitäten Beijing, Stuttgart und Ulm kooperieren, mit der "Methode der zeitdifferenziellen Dilatometrie": "Darunter verstehen wir eine zeitabhängige Ausdehnungsmessung bei konstanter Temperatur nach raschen Temperaturwechseln, mit der wir Änderungen der Materialabmessungen bis in den Nanometerbereich bestimmen können", so Sprengel, der die lasergestützte Messmethode am Institut für Materialphysik der TU Graz weiterentwickelt.

"Die Ergebnisse der Forschungsarbeit sind ein wichtiger Schritt für das Verständnis amorpher Materialien wie Quarzglas und Polymere und sind von großer Bedeutung für die Festkörper- und Materialphysik", zeigt sich Institutsleiter Roland Würschum optimistisch. Die Arbeit wurde kürzlich in der renommierten amerikanischen Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS, Bd. 104 (2007), S. 12962) veröffentlicht und ist online unter http://www.pnas.org/cgi/content/short/104/32/12962 verfügbar.

Rückfragen:
Dr.rer.nat. Univ.-Doz. Wolfgang Sprengel
Institut für Materialphysik
Email: w.sprengel@TUGraz.at
Tel: +43 (316) 873 - 8686

Alice Senarclens de Grancy | idw
Weitere Informationen:
http://www.TUGraz.at
http://www.pnas.org/cgi/content/short/104/32/12962

Weitere Berichte zu: Festkörper Glasübergang Materialphysik Temperatur

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?
30.03.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE