Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanomuster bringen Strom unter Kontrolle

08.02.2007
Natriumkobaltoxid als perfektes Material für Laptop-Batterien, als Kühlmittel oder Supraleiter

Regelmäßige Muster aus Natriumatomen mit Strukturen im Nanometerbereich machen Natriumkobaltoxid zu einem perfekten Material für Laptop-Batterien, effiziente Kühlmittel oder Supraleiter - das berichten Wissenschaftler des Berliner Hahn-Meitner-Instituts, des CEA-Forschungszentrums in Saclay bei Paris und der Universität Liverpool in der neuesten Ausgabe des Wissenschaftsmagazins Nature.

Dabei bestimmt die genaue Anordnung der Natriumatome die Eigenschaften des Materials. Gleichzeitig hängt das jeweilige Natriummuster sehr empfindlich von der Dichte an Natriumatomen ab, die man mit chemischen Methoden leicht verändern kann. So kann man aus einem anfangs metallischen Material einen Isolator und dann einen Supraleiter machen, indem man es in einer elektrochemischen Zelle unterbringt und die Spannung ändert.

Auf atomarem Niveau hat Natriumkobaltoxid (NaxCoO) eine Struktur, in der sich Schichten aus Kobaltoxid mit solchen aus Natriumatomen abwechseln. Die Natriumatome sind in regelmäßigen Mustern angeordnet und bestimmen dadurch die elektrischen Eigenschaften des Materials. Sind beispielsweise die Natriumatome weit voneinander entfernt, kann jedes Atom Elektronen einfangen und so den Stromfluss behindern - die Substanz wird zum Isolator. Sind die Atome dagegen in Reihen angeordnet, wirken sie wie Drähte, so dass der Strom entlang einer Richtung fließen kann. Professor Alan Tennant, vom Hahn-Meitner-Institut Berlin, von dem die Idee für die Arbeit stammt, erläutert: "Die Elektronen, die für den Stromfluss verantwortlich sind, verhalten sich wie Wellen. Sie wollen ihre Wellenlänge einer regelmäßigen äußeren Struktur anpassen. Weil die genaue Dichte der Natriumatome ihre geometrische Anordnung bestimmt, kann man die Elektronen mithilfe der chemischen Zusammensetzung beeinflussen. Wären die Natriumatome zufällig verteilt, würden kleine Änderungen der Zusammensetzung den Strom in der Substanz kaum verändern." Alan Tennant betont, dass die Ergebnisse technologisch sehr wertvoll sind, denn "unsere Fähigkeit, den Elektronenfluss immer genauer zu steuern, macht den rasanten Fortschritt der Informations- und Kommunikationstechnologien erst möglich."

Verbesserte Festkörperbatterien haben vor allem iPods, Mobiltelefone und andere tragbare elektronische Geräte revolutioniert. Laptopbatterien bestehen heutzutage aus Lithium-Kobalt-Oxid - einer Substanz, die dem Natrium-Kobalt-Oxid sehr ähnlich ist. Man lädt sie, indem man die Konzentration der Lithium-Atome ändert. "Wir wissen, dass auch die Lithium-Atome in regelmäßigen Mustern angeordnet sind. Sie dürften ein ähnlich aufregendes Verhalten zeigen wie die Natrium-Verbindungen", sagt Tennant.

Kühlende Muster

Natriumkobaltoxid könnte auch Grundlage effizienter thermoelektrischer Kühlsysteme sein, denn es erfüllt als eine von wenigen Substanzen die nötigen Bedingungen: sie leitet Wärme nur schlecht, ist aber ein guter elektrischer Leiter. Den Grund dafür kann man sich an der abgebildeten Struktur veranschaulichen: die rot markierten Natriumatome sind in "Käfigen" gefangen, die von den blau markierten Atomen gebildet werden. Sie können in diesen "Käfigen" hin und her schwingen und nehmen so einen großen Teil der Wärme auf, die sich durch die Substanz bewegt ohne gleichzeitig den elektrischen Strom in seinem Fluss zu stören. Neuartige thermoelektrische Materialien könnten Wege zu effizienteren Kühlverfahren eröffnen und somit helfen, Elektrizität aus geothermischer Energie oder dem heißen Wasser zu gewinnen, das in gewöhnlichen Kraftwerken entsteht.

Wie die Muster zustande kommen

Die Forscher haben für verschiedene Natriumkonzentrationen zahlreiche Natriummuster gefunden. Um zu verstehen, wie diese entstehen, kann man sich die Atome als Murmeln vorstellen. Die Sauerstoffatome sind in einem Bienenwabenmuster angeordnet, wobei die Natriumatome in den Vertiefungen liegen, die sich zwischen ihnen bilden. Weil die Natriumatome zu groß sind, können nicht zwei von ihnen in benachbarten Vertiefungen liegen, so dass bei maximaler Natriumkonzentration nur jede zweite Vertiefung besetzt ist. Dadurch entstehen zwei Arten von möglichen Natriumpositionen, die in der Abbildung den blauen bzw. roten Kugeln entsprechen. Außerdem stoßen die Natriumatome einander ab, so dass diese versuchen, möglichst weit voneinander entfernt zu sein. Die tatsächliche Struktur spiegelt die beste Anordnung bei bestimmter Konzentration wider, die diesen Forderungen genügt.

Die experimentellen Daten, die nötig waren, um die Natriumstrukturen aufzuklären, lieferten Versuche mit Neutronen und Synchrotronstrahlen am Hahn-Meitner-Institut Berlin und am Rutherford Appleton Laboratrory in Großbritannien. Mit Hilfe des Supercomputers MAP2, der an der Universität Liverpool üblicherweise für Rechnungen in der Elementarteilchenphysik genutzt wird, konnten die Wissenschaftler dann die Natriummuster entschlüsseln.

An dieser europäischen Kooperation waren darüber hinaus Forscher der Universitäten Oxford und Bristol, der Berliner Synchrotronstrahlungsquelle BESSY und der Europäischen Synchrotronstrahlungsquelle ESRF beteiligt.

Dr. Ina Helms | idw
Weitere Informationen:
http://www.hmi.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie