Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

FIRE: Ein Algorithmus macht Furore

21.11.2006
Software aus Freiburg steigert die Genauigkeit von Werkstoffmodellen aller Art.

Ein Patent auf Software? Das gibt es nur in den USA. Dort hat ein Team des Fraunhofer-Instituts für Werkstoffmechanik IWM in Freiburg jetzt einen Algorithmus zum Patent angemeldet. Entwickelt wurde er, um die Simulation des Verhaltens von Materialien am Rechner weiter zu verbessern. Die Software mit dem Kurznamen FIRE (für Fast Inertial Relaxation Engine) könne praktisch jedes mathematische Werkstoffmodell optimieren - und das dreimal schneller und wesentlich genauer als etablierte Verfahren, meinen IWM-Projektleiter Michael Moseler und Peter Gumbsch.


Der FIRE-Algorithmus läßt sich leicht anhand eines Skifahrers verstehen, der im Nebel auf einer kompliziert geformten Piste die Talstation sucht. Dazu führt er eine Schußfahrt durch, die er abrupt unterbricht und neu startet, sobald es bergauf gehen sollte. Zusätzlich steuert der Skifahrer immer leicht in Talrichtung. Dadurch findet er im gezeigten Beispiel die Mitte der Spirale schneller als alle etablierten Algorithmen.

Zweieinhalb Jahre haben die beiden Forscher mit einem Kernteam von fünf Leuten, darunter auch Mitarbeiter des Instituts für Zuverlässigkeit von Bauteilen und Systemen in Karlsruhe, an der Entwicklung des Algorithmus gearbeitet. Jetzt hat die renommierte Zeitschrift "Physical Review Letters" einen Beitrag zu FIRE veröffentlicht. Bei einer großen Internationalen Konferenz der Materialmodellierer in Freiburg im September 2006 erregte die Software ebenfalls großes Aufsehen. Die 350 Experten aus aller Welt hatten sich getroffen, um mathematische Beschreibungen von Werkstoffen weiterzuentwickeln, damit sich deren Verhalten als Bauteil noch präziser vorausberechnen lässt.

Da kam ihnen FIRE offenbar gerade recht: Der Algorithmus beantwortet die Frage, was zu tun ist, um ein beliebiges Werkstoffmodell zu optimieren. "Ein Werkstoffmodell, mit dem das Verhalten eines Bauteils errechnet wird, beschreibt wie die Energie des Materials von dessen inneren Freiheitsgraden abhängt," erklärt Michael Moseler. Daraus ergebe sich zum Beispiel, wie viel oder wie wenig Energie für eine bestimmte Anordnung der Atome in den Molekülen nötig sei. "Die Natur sucht immer den Zustand der niedrigsten Energie. Das muß das Modell im Grunde nachmachen: Es muß schauen, wie ein Material auf Belastung reagiert, wie es sich verformt oder gar bricht - um eben Spannungen oder Druck abzubauen oder aufzunehmen und wieder einen energetisch günstigen Zustand zu erreichen", erläutert Michael Moseler, Leiter der Arbeitsgruppe Physikalische Werkstoffmodellierung am Fraunhofer IWM, die Ausgangslage. "Unser Algorithmus findet diesen Zustand extrem schnell und zuverlässig und hilft damit ein Modell beziehungsweise seine Vorhersage und die Wirklichkeit noch näher zueinander zu bringen." ergänzt Peter Gumbsch, Leiter des Fraunhofer IWM und des Instituts für Zuverlässigkeit von Bauteilen und Systemen an der Universität Karlsruhe.

Die beiden Wissenschaftler vergleichen die Leistung des Algorithmus mit einem Skifahrer, der im Nebel, also fast ohne Sicht, die schnellste Route ins Tal - also zum energetisch tiefsten und damit günstigsten Zustand - sucht. Eine Schussfahrt, die aber immer auch die Geländeentwicklung im Auge behält, also zum Beispiel korrigiert, wenn es nur leicht bergauf geht, sei die günstigste Variante. Für mathematisch Unbeschlagene vermittelt der Vergleich zumindest den Hauch einer Ahnung. Denn auch Moseler schränkt ein: "Der Skifahrer hat auf der zweidimensionalen Fläche ja nur wenige Freiheitsgrade, also Entscheidungsmöglichkeiten. Wenn wir beispielsweise die Struktur eines erhitzten Kupferkorns nach dem Abkühlen berechnen, haben wir es mit Millionen bis Milliarden Freiheitsgraden zu tun."

Der Algorithmus trage dazu bei, dass ein Energieminimum nicht erst nach Tagen, sondern bereits in wenigen Stunden gefunden wird - wobei herkömmliche Algorithmen sogar in einigen wichtigen Fällen ergebnislos abbrachen. Die neu entwickelte Software in ein Materialmodell einzubauen, sei ebenfalls innerhalb weniger Stunden möglich. "Auch da sind wir besser als die bisherigen Verfahren", sagt Peter Gumbsch. Das amerikanische Patent soll die Software schützen und dafür sorgen, dass die Forscher nach der intensiven und kostenträchtigen Entwicklungsphase nun auch vom großen Bedarf weltweit profitieren.

Das Fraunhofer IWM in Freiburg ist eine der führenden Einrichtungen für Werkstoffsimulation in Europa. Finanziert wurde die Entwicklung von FIRE von der Fraunhofer-Gesellschaft im Rahmen des Projekts "Multiscale Materials Modeling".

Thomas Götz | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.iwm.fraunhofer.de/

Weitere Berichte zu: Algorithmus Bauteil FIRE Werkstoffmodell

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Sparsamer abheben dank Leichtbau-Luftdüsen
23.10.2017 | Technische Universität Chemnitz

nachricht Stickoxide: Neuartiger Katalysator soll Abgase ohne Zusätze reinigen
23.10.2017 | Forschungszentrum Jülich GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie