Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Kristall schluckt Hyperschall

09.11.2006
Mainzer Max-Planck-Forscher stellen erstmals Kristalle her, die mit Schallwellen und Licht gleichzeitig wechselwirken können

Eine Glasplatte, Silikonöl und Polystyrolkügelchen - aus diesen einfachen Komponenten haben Forscher des Max-Planck-Instituts für Polymerforschung in Mainz einen Kolloidkristall hergestellt, der Hyperschallwellen blockiert.


Auf dieser elektronenmikroskopischen Aufnahme der Kolloidkristalloberfläche erkennt man die gleichmäßig nebeneinander angeordneten Polystyrolkugeln, deren Durchmesser 256 Nanometer beträgt. Bild: Max-Planck-Institut für Polymerforschung

Die Struktur des Materials ist so fein, dass es nicht nur mit hochfrequenten Schallwellen sondern auch mit Lichtwellen wechselwirkt. Den Forschern gelang es außerdem erstmals, mittels einer speziellen hochauflösenden Spektroskopiemethode Lage und Breite des Frequenzintervalls, das der Kristall schluckt, sehr genau zu vermessen. Materialien dieser Art könnte man verwenden, um Schallschilder, akustische Superlinsen oder Wärmebarrieren zu konstruieren (Nature Materials, online: 3. September 2006).

Ein Fenster, das das Rauschen der Autobahn konsequent aussperrt aber Vogelgezwitscher rein lässt - phononische Kristalle könnten das möglich machen. Solche Kristalle blockieren Schallwellen mit bestimmten Frequenzen, andere Frequenzen durchdringen das Material mühelos. Der Frequenzbereich, der den Kristall nicht passieren kann, heißt Bandlücke.

Bisher existierten lediglich phononische Kristalle mit Bandlücken für hörbaren Schall (20Hz bis 20 kHz) oder Ultraschall (20 kHz bis 100 MHz). Nun stellten Mainzer Forscher erstmals einen Kristall her, der Hyperschallwellen reflektiert, also Frequenzen im Gigahertzbereich. Da er aus unzähligen nanometergroßen Teilchen besteht, sogenannten Kolloiden, bezeichnet man ihn als Kolloidkristall. Damit erzielten die Wissenschaftler einen wichtigen Fortschritt bei der Erforschung von Bandlücken. "Viele der Effekt in solchen Materialien sind noch unerforscht", sagt Dr. Ulrich Jonas, der Projektleiter, "wir dringen hier in physikalisches Neuland vor."

Denn die kurzen Hyperschallwellen haben interessante Eigenschaften, die sie deutlich von ihren langen Verwandten unterscheiden. Anders als Schall- und Ultraschallwellen, die immer aus einer externen Quelle stammen, gehen Hyperschallwellen unter anderem aus der Wärmebewegung der Atome in dem Kristall selber hervor. Selbst Isoliermaterialien übertragen Wärme über akustische Wellen im Gigahertzbereich. Lässt sich die Bewegung dieser Wellen beeinflussen, wirkt sich das direkt auf die Wärmeleitfähigkeit aus. Diesen Effekt könnten hocheffektive Wärmebarrieren ausnutzen.

Außerdem verfügen Kristalle, die im Gigahertzbereich absorbieren, über Bandlücken für Licht und Schall. Man kann also gleichzeitig steuern, wie sich akustische und optische Wellen im Material fortsetzen und miteinander wechselwirken. Diese einzigartige Eigenschaft erlaubt es möglicher Weise, optische Modulatoren oder, etwas weiter in die Zukunft gedacht, akustische Laser zu entwickeln.

In phononischen Kristallen wechseln sich gleichmäßig Abschnitte mit hoher Elastizität und niedriger Elastizität ab. Der Schall ist so mal schneller und mal langsamer - stop and go für die Schallwellen. Das Material blockt Schallwellen ab, deren Wellenlänge etwa so lang ist, wie die Bereiche verschiedener Elastizität im Kristall voneinander entfernt sind. Für Bandlücken im Hyperschallbereich mit sehr kurzen Wellenlängen müssen Wissenschaftler deshalb ein periodisches Muster im Nanometermaßstab erzeugen, während für hörbaren Schall zentimetergroße und für Ultraschall millimeter- bis einige zehn mikrometergroße Strukturen reichen.

Im phononischen Kristall der Mainzer Forscher bilden nanometergroße Polystyrolkugeln (aus Polystyrol besteht auch Styropor) und Silikonöl die beiden Phasen mit unterschiedlichen Schallgeschwindigkeiten. Die winzigen Kugeln ordnen sich von selber regelmäßig auf einer Glasplatte an, während die Forscher sie aus einer wässrigen Suspension der Polystyrolkugeln ziehen. Anschließend trocknen die Wissenschaftler die Probe und benetzen sie mit Silikonöl. Indem sie die Kugelgröße oder die Benetzungsflüssigkeit verändern, können sie die Lage und Breite der Bandlücke gezielt einstellen.

Um die Bandlücke zu vermessen, verwendeten die Wissenschaftler erstmals ein relativ neu entwickeltes Verfahren: die hochauflösende Brillouin-Spektroskopie, die auf der Streuung von Licht beruht. Mit dieser Technik konnten sie in außergewöhnlich hoher Auflösung messen, welche Schallwellen sich im nanostrukturierten Kristall ausbreiten können und welche nicht. Die hohe Messgenauigkeit schafft auch die Voraussetzung, um akustische Superlinsen für die hochauflösende Ultraschall-Bildgebung herzustellen.

Die Forscher haben also ein neuartiges Material mit einer Bandlücke im Hyperschall entwickelt und diese Bandlücke dazu noch mit bislang ungekannter Präzision vermessen. "Wir versuchen nun auch das Kugelmaterial zu variieren und mehrere Bandlücken herzustellen" gibt Dr. Jonas einen Ausblick, "damit wollen wir das Material an denkbare technische Anwendungen anpassen."

Originalveröffentlichung:

W. Cheng, J. Wang, U. Jonas, G. Fytas, N. Stefanou,
Observation and Tuning of Hypersonic Bandgaps in Colloidal Crystals
Nature Materials, online: 3. September 2006
E. L. Thomas, T. Gorishnyy, Maldovan, M.
Colloidal Crystals go Hypersonic
Nature Materials, Oktober 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften