Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Funktionsmaterialien für alternative Energien im Visier

18.08.2006
"Die meisten Erfindungen werden durch Zufall gemacht. Wir wollen gezielt und kontrolliert Eigenschaften von Materialien verändern und dabei trotzdem genügend Freiräume für Zufälle lassen." So beschreibt Anke Weidenkaff ihr Vorgehen beim Entwickeln neuer Funktionsmaterialien für Energieumwandlungs- und Umwelttechnologien. Sie ist seit 1. Mai 2006 Leiterin der Empa-Abteilung "Festkörperchemie und -katalyse".

Es passierte auf einer wissenschaftlichen Konferenz; Anke Weidenkaff, die in Kiel und Hamburg Chemie studiert hatte, kam ins Gespräch mit Solarchemikern, war fasziniert von dem, was sie da vernahm - und wusste augenblicklich: "ihr" Forschungsgebiet sind die alternativen Energiequellen. Seither befasst sie sich mit verschiedenen Feststoffen, die eine Form von Energie in eine andere umwandeln können. Nach ihrer Doktorarbeit am Paul Scherrer Institut (PSI) in Villigen und der ETH Zürich sowie einem Postdoc-Aufenthalt am Solarforschungs-Institut des "Centre national de la recherche scientifique (CNRS)" im französischen Font-Romeu habilitierte sie an der Universität Augsburg und erhielt eine Gastprofessur an der Universität Caen. Ende 2003 folgte sie dem Ruf der Empa nach Dübendorf.

Von der Gruppenleitung zur Abteilungsspitze

An der Empa baute sie erfolgreich die Gruppe "Festkörperchemie" auf, die als erstes Team hier zu Lande neue perowskitartige Thermoelektrika zu entwickeln begann. "Sehr gut" laufe dies, berichtet Anke Weidenkaff. "Wir haben bereits nach kurzer Zeit angefangen, eine wichtige Rolle in der Perowskitforschung zu spielen, und haben die internationale Perowskit-Konferenz ins Leben gerufen". Perowskite - keramische Materialien mit einer speziellen Kristallstruktur - eignen sich unter anderem als Energiewandler von mechanischer oder thermischer Energie - sprich Wärme - in Elektrizität. Perowskite liegen im Trend; jährlich erscheinen derzeit mehr als 2500 Publikationen in angesehenen Fachblättern über diese Verbindungen, die dadurch zu einer der wichtigsten Materialklassen der Chemie avancierten.

Im Frühjahr 2006 ernannte die Empa-Direktion Anke Weidenkaff nach einem internationalen Auswahlverfahren zur Leiterin der Abteilung "Festkörperchemie und -katalyse". In ihrer neuen Position gäbe es eigentlich keine grossen Unterschiede zur vorherigen Arbeit als Gruppenleiterin, meint sie gut 100 Tage nach Antritt der neuen Funktion. "Das Wichtigste für eine Abteilung ist, dass das Team motiviert und kompetent zusammenarbeitet. Keine Frage, meine Mitarbeiterinnen und Mitarbeiter erfüllen diesen Anspruch, wir können uns aufeinander verlassen."

Materialforschung zum Wohl der Umwelt

Der Abteilungsname ist Programm. "Die Festkörperchemie bildet die Grundlage, von der wir weitergehen in Richtung Anwendungen und Materialdesign für Energieumwandlungs- und Umwelttechnologien", erklärt Anke Weidenkaff. "Nur wenn wir die Eigenschaften von Materialien grundlegend verstehen, können wir neue Werkstoffe mit bestimmten erwünschten Funktionen gezielt herstellen." Die Untersuchung von Materialstruktur, Eigenschaften und Interaktionen sei das Band, welches die drei Gruppen - "Festkörperchemie", "Feststoffanalytik" und "Festkörperkatalyse" - zusammenhalte.

Ein bedeutender Forschungsbereich ist das "Massschneidern" von Energiewandlern, die beispielsweise die Wärme der Sonnenstrahlen in elektrische Energie oder elektrische in chemische Energie umwandeln. Die Energieumwandlung wird durch den Transport von Elektronen oder Ionen, die als "Energieträger" fungieren, ermöglicht. Anke Weidenkaff und ihr Team untersuchen, wie die geladenen Teilchen in verschiedenen Festkörpern transportiert werden, und wie dieser Energietransport kontrolliert werden kann. Dabei experimentieren die ForscherInnen mit an der Empa entwickelten neuartigen Materialien mit Perowskitstruktur sowie mit Kohlenstoff-Nanoröhrchen. "Unsere Herausforderung ist es, den Gegensatz zwischen Reaktivität und Stabilität eines Materials optimal zu nutzen", begeistert sich die Chemikerin. Viel versprechend seien so genannte mesoporöse Materialien, also Materialien mit Porengrössen zwischen 2 und 50 Nanometer. Dank der feinen Porenstruktur weisen solche Materialien eine grosse Oberfläche auf, was sie sehr reaktionsfreudig mache. Da mesoporöse Materialien gleichzeitig auch stabil sind, bieten sie sich geradezu an, chemische Energie aus so genannten Redoxreaktionen - wie sie unter anderem in einer Brennstoffzelle ablaufen - in andere Energieformen umzuwandeln.

Der Frage, wie sich der durch Menschen verursachte Ausstoss von Schadstoffen reduzieren oder gar verhindern lässt, geht die Gruppe "Katalyse" nach. So sucht sie beispielsweise nach neuen Materialien und Technologien für eine "sauberere" Erdgasverbrennung sowie nach Ersatzmaterialien für edelmetallhaltige Abgaskatalysatoren; denn Palladium, Platin oder Rhodium - die Bestandteile herkömmlicher Katalysatoren - sind sehr teure und knappe Rohstoffe. Perowskitartige Materialien seien hier denkbare Alternativen, so Weidenkaff.

Die neu ausgerichtete Abteilung ist nicht nur Empa-intern sehr gut vernetzt.

Neben gemeinsamen Projekten mit dem PSI und dem "Laboratoire de cristallographie et sciences des matériaux (CRISMAT)" in Caen bestehen Kontakte mit der Universität Augsburg, und eine Zusammenarbeit mit der "Academy of Science" in Prag bahnt sich gerade an.

Freude an der Ausbildung von NachwuchswissenschaftlerInnen

Zurzeit betreut Anke Weidenkaff vier Doktorierende - aus Frankreich, Spanien, Weissrussland und Russland - sowie eine Diplomandin aus der Schweiz. "Ich habe sehr viel Spass daran, und die jungen Leute sind sehr erfolgreich", sagt sie. "Da unsere Doktorandinnen und Doktoranden nicht wie an einer Universität Praktika betreuen müssen, übernehmen sie neben ihrer eigentlichen Forschungsarbeit noch andere Aufgaben." So organisieren und gestalten sie beispielsweise Seminare und "hands-on"-Workshops an der Empa, an denen neue Methoden zur Charakterisierung von Festkörpern sowie das Arbeiten mit neuen Computerprogrammen vermittelt werden und die NachwuchsforscherInnen mit eingeladenen ExpertInnen ihre Projekte diskutieren.

Text: Daniela Wenger

Fachliche Informationen:
Dr. Anke Weidenkaff, Abteilung Festkörperchemie und -katalyse, Tel. +41 44 823 4131, anke.weidenkaff@empa.ch
Redaktion (Text und Bilder):
Sabine Voser, Abteilung Kommunikation, Tel. +41 44 823 45 99, sabine.voser@empa.ch

Martina Peter | idw
Weitere Informationen:
http://www.empa.ch

Weitere Berichte zu: Festkörperchemie Funktionsmaterial

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie