Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kontrollierte Korrosion

09.02.2006


Europäisches Forscherteam beobachtet erstmals Korrosionsprozess auf atomarer Ebene / Neue Technologie zur Nanostrukturierung


Strukturmodell einer korrosionsinduzierten, goldreichen, drei Atomlagen dicken Passivierungsschicht auf Cu3Au, die das Material zunächst vor weiterem Auslösen von Kupfer-Atomen schützt. Die Goldatome sind als gelbe und die Kupferatome als rote Kugeln dargestellt. Korrosion ist ein alltäglicher Prozess, der auch nicht vor der Minerva, der Ikone der Max-Planck-Gesellschaft, halt macht. Bild: Max-Planck-Institut für Metallforschung


Aufnahme der Cu3Au-Oberfläche mit einem Rasterkraftmikroskop nach Auflösung der CuAu-Passivierungsschicht. Auf dem Bild lassen sich 10 bis 20 Nanometer große Goldinseln erkennen. Bild: Max-Planck-Institut für Metallforschung



Die Korrosion technisch relevanter Legierungen wie Edelstahl verursacht jedes Jahr weltweit einen wirtschaftlichen Schaden von etwa 3 Prozent des globalen Bruttosozialprodukts. Obwohl dieses Alltagsphänomen so weitreichende Folgen hat, sind seine grundlegenden mikroskopischen Prozesse noch weitgehend unverstanden, vor allem was das Einsetzen und die Evolution der Korrosion auf atomarer Ebene betrifft. Nun ist es Andreas Stierle und seinen Kollegen des Max-Planck-Instituts für Metallforschung, der Universität Ulm sowie der Europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble/Frankreich, erstmals gelungen, diese atomaren Prozesse bei der Korrosion einer Legierung gewissermaßen "live" zu verfolgen. Zur großen Überraschung der Forscher entsteht bei der an sich zerstörerischen Korrosion zunächst eine perfekte kristalline Schutzschicht, deren Struktur und chemische Zusammensetzung die Wissenschaftler mit Hilfe hochbrillianter Synchrotronstrahlung entschlüsseln konnten. Ihre Beobachtungen zeigen zudem, wie man technologisch relevante Legierungsoberflächen durch gezielte Korrosionsprozesse nanostrukturieren kann (Nature, 9. Februar 2006).



Für ihre grundlegenden Untersuchungen haben die Forscher des Max-Planck-Instituts für Metallforschung und der Europäischen Synchrotronstrahlungsquelle mit Cu3Au eine Legierung ausgewählt, deren zwei Komponenten ein stark unterschiedliches Korrosionsverhalten aufweisen. Während Kupfer schon bei kleinen Korrosionspotenzialen, also einer elektrischen Spannung, die man zwischen der Probe und einer Referenzelektrode durch den Elektrolyten anlegt, in eine schwelfelsäurehaltige Lösung übergeht, ist Gold weitaus widerstandsfähiger.

Mit Hilfe der brillianten Synchrotronstrahlung haben die Forscher nun das Einsetzen der Korrosion bei der Legierung Cu3Au in hoher Auflösung und zerstörungsfrei untersucht. Dabei gelang es ihnen erstmalig, die Grenzfläche zwischen dem flüssigen Elektrolyten und dem Legierungskristall mit einer Auflösung im Picometer-Bereich (10-12 Meter, 1 Nanometer = 1.000 Picometer) direkt während des Korrosionsprozesses zu analysieren.

Wird nur wenig Kupfer aus dieser Grenzfläche herausgelöst, verändert sich diese und es bildet sich eine einkristalline, nur drei atomare Lagen dicke, goldreiche Passivierungsschicht, die die Oberfläche des Materials zunächst vor weiterer Korrosion schützt (s. Abb. 1). Dabei übernimmt diese Passivierungsschicht interessanterweise die Kristallstruktur des Substrats nicht eins zu eins. Vielmehr wirkt die Grenzfläche des Materials zum Elektrolyten wie ein Spiegel, der bewirkt, dass der Film mit der Zwillingsstruktur des Substrats aufwächst.

Erhöht man nun das Korrosionspotenzial weiter durch Änderung der elektrischen Spannung zwischen Probe und Referenzelektrode, so wird auch das restliche Kupfer aus der zunächst schützenden Passierungsschicht herausgelöst und die verbleibenden Goldatome bilden etwa zwei Nanometer hohe Goldinseln, die die Oberfläche nicht mehr komplett bedecken (s. Abb. 2). Dieser Vorgang, auch Entnetzung genannt, ist bereits aus der Natur bekannt, wenn sich etwa Regentropfen auf einem Blatt zusammenziehen. Die Korrosion schreitet nun über die direkt mit dem Elektrolyten in Kontakt stehenden Cu3Au-Flächen fort und es bildet sich eine löchrige, schaumartige Struktur mit Korrosionsporen.

Aus diesen Forschungsergebnissen können Materialwissenschaftler lernen, dass man eine optimale Oberflächenpassivierung von Legierungen erhält, wenn man das Korrosionspotential über der Oberfläche gezielt so einstellt, dass sich eine Passivierungsschicht bildet. Darüber hinaus ist die kontrollierte Korrosion bei höheren Potentialen eine elegante Methode, mit der man Materialoberflächen chemisch im Nanometer-Bereich strukturieren kann. Schreitet die Korrosion immer weiter voran, bildet sich schließlich ein nanoporöser Goldfilm, der auf Grund seiner sehr großen Oberfläche etwa als Katalysatormaterial genutzt werden kann.

Originalveröffentlichung:

F. U. Renner, A. Stierle, H. Dosch, D. M. Kolb, T.-L. Lee & J. Zegenhagen
Initial corrosion observed on the atomic scale
Nature, 9 February 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie