Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Theorie für rasende Risse

19.01.2006


Stuttgarter Max-Planck-Forscher und Forscher am Massachusetts Institute of Technology (MIT) entwickeln gemeinsam ein Modell, das die Ausbreitung von Rissen beschreibt


Schematisches Bild, das die Entstehung von Bruchinstabilitäten zeigt. Nach spiegelglatten Kanten ("mirror") wird der Riss bei langsamer Ausbreitung des Risses immer rauer ("mist"), bis er sich schließlich sogar verzweigt ("hackle"). Bild: M. Buehler/Massachusetts Institute of Technology


Auftreten von Bruchinstabilitäten. Bei einer kritischen Geschwindigkeit wird die Bewegung eines Risses instabil. Er breitet sich dadurch nicht mehr geradlinig aus, was zu immer unebeneren Oberflächen führt. Bild: M. Buehler/Massachusetts Institute of Technology



Wenn Materialien zerreißen, dann werden Atombindungen aufgebrochen. Wie das genau vor sich geht, war lange ein Rätsel. Nun haben Wissenschaftler am Massachusetts Institute of Technology (MIT) in Cambridge und am Max- Planck-Institut für Metallforschung in Stuttgart dafür eine Theorie entwickelt, unterstützt von aufwändigen Simulationen, die sie zuvor auf Parallelrechnern verschiedener Max-Planck-Institute durchführten. Während herkömmliche Theorien von einem linearen Zusammenhang zwischen Zugspannung und Materialbeanspruchung ausgingen, konnten die Wissenschaftler zeigen, dass die Beanspruchungen in Wirklichkeit hochgradig nichtlinear sind, weil besonders an der Spitze des Risses starke Verformungen auftreten. Ergebnis: Die neue nichtlineare Theorie der Rissentstehung gilt für viel mehr Materialien als ihre Vorgängertheorien - und ist möglicherweise nicht nur für Materialwissenschaftler interessant, sondern auch zum Beispiel für Erdbebenforscher (Nature, 19. Januar 2006).



Seit Jahrzehnten versuchen Forscher die Ausbreitung von Rissen in Materialien zu beschreiben. Klar ist: Wenn Materialien reißen, dann trennen sich Atome und es entstehen neue Oberflächen. Dabei zeigen Experimente: Geschieht das langsam, dann entstehen atomare Oberflächen, die spiegelglatt sind, während schnellere Risse die Oberflächen immer unregelmäßiger werden lassen, bis der Riss sich schließlich verzweigt (s. Abb. 1 und Abb. 2). Dieses Verhalten - dynamische Bruchinstabilität genannt - lässt sich in vielen spröden Materialien beobachten, unter anderem in Metallen, Polymeren oder Halbleitern.

Seit einigen Jahren ist daher klar, dass man bei der Entstehung solcher Phänomene die Atome in die Erklärung einbeziehen muss - doch es blieb ein Rätsel, wie. Welche Physik spielt dabei im Detail eine Rolle? Wie kann man die Geschwindigkeit der Rissausbreitung berechnen? Die existierenden Modelle standen nicht im Einklang mit der Realität oder Computersimulationen und widersprachen sich bisweilen sogar.

Nun hat ein Team um Markus Buehler und Huajian Gao auf der Basis von Computerexperimenten ein Modell entwickelt, dass die Ausbreitung der Risse erfolgreich beschreiben kann - und zwar in einer Vielzahl spröder Materialien. Die Wissenschaftler gehen davon aus, dass in der dynamischen Bruchinstabilität mehrerer Prozesse zusammenspielen, die alle zusammen vom Energiefluss und dem Spannungsfeld in der direkten Umgebung der Rissspitze gesteuert werden. Anders, als man bisher dachte, hat die Bruchinstabilität nichts mit etwaigen vorher vorhandenen Defekten in den Materialien zu tun, sondern tritt auch in absolut regelmäßigen Materialien auf.

"Wir haben entdeckt, dass sich die Ungereimtheiten in der Literatur lösen lassen, wenn man das Verhalten des Materials beim Aufbrechen der atomaren Bindungen betrachtet, anstatt nur Materialeigenschaften unter kleinen Zugbelastungen in die Rechnungen einzubeziehen, wie es bislang geschah", so Markus Buehler. "In Spezialfällen geht unsere neue Theorie in bestehende Modelle über. Sie erlaubt aber eine einheitliche Behandlung des Instabilitätsproblems bei einer viel größeren Klasse Materialien."

Die kleinen Zugbelastungen, auf die man in den herkömmlichen Modellen setzte, führten zu einem einfachen, linearen Zusammenhang zwischen Zugspannung und Materialbeanspruchung. Der war zwar leicht zu berechnen, erwies sich aber besonders an der Spitze eines Risses als falsch. Denn hier tritt "nichtlineare Elastizität" ("Hyperelastizität") auf (s. Abb. 3): Wegen der großen Spannungen auf engstem Raum spielen quantenmechanische und atomare Eigenschaften der Materialien an der Spitze des Risses plötzlich eine wichtige Rolle. Sie machen die Rechnung nicht nur nichtlinear, sondern beherrschen sogar die Ausbreitung des Risses.

In das Modell lassen sich auch ungewöhnliche Änderungen der Elastizität an der Spitze des Risses integrieren. So verändert sich zum Beispiel in bestimmten Materialien die Elastizität mit der Deformation - Gummi etwa ist weich, wenn man ihn wenig dehnt, bei starker Dehnung wird er dagegen hart. Daher wird die Deformationsenergie, die beim Reißen auftritt, je nach Deformation unterschiedlich stark geschluckt. Die neue Theorie zeigt: In solchen Materialien können sich Risse schneller als der Schall ausbreiten. Dies steht im Widerspruch zu allen gängigen Theorien, ist aber im Einklang mit den neu entwickelten Konzepten. Überschallrisse wurden kürzlich auch im Experiment entdeckt - die neue Theorie könnte als Erklärung dafür dienen.

Die Wissenschaftler vermuten, dass ihre neue Theorie auch in anderen Größenordnungen und Anwendungsbereichen eine Rolle spielen könnte. So könnten etwa Materialforscher die Rissausbreitung in Nanomaterialien untersuchen oder Architekten mit ihrer Hilfe die Rissentstehung in Gebäuden beschreiben. Eine wichtige Rolle spielen Risse und ihre Ausbreitung auch in der Erforschung von Erdbeben: Möglicherweise wird auch hier die neue Theorie helfen.

Originalveröffentlichung:

Markus J. Buehler, Huajian Gao
Dynamical fracture instabilities due to local hyperelasticity at crack tips

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Bruchinstabilität Elastizität Riss

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Flammschutzmittel – Verborgene Lebensretter in Kunststoffen
20.07.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Wie man Stickstoff zwingt, sich zu binden
20.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikrophotonik – Optische Technologien auf dem Weg in die Hochintegration

21.07.2017 | Förderungen Preise

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie