Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tunnelling electrons speed up large area carbon electronics

05.01.2006


Researchers at the Advanced Technology Institute at the University of Surrey have reported in the January 2006 issue of Nature Materials the first demonstration of negative resistance in amorphous semiconductors. Electronics based on amorphous materials is the key to large area low cost driver circuitry in flat panel displays, but their operating speed has been limited by the difficulty with which electrons move through disordered amorphous materials. Now, the observation of negative resistance offers the prospect of low-cost devices switching at Gigahertz rates, and opening up applications from large area display drivers to high-speed electronics for mobile communications. These devices are suitable to be used in combination with plastic electronics due to the room temperature deposition process.



The breakthrough at Surrey has been to make devices with layers only a few nanometres thick, through which electrons can pass by quantum-mechanical tunnelling. In a three-layer structure, the composition and thickness of the layers control the energies at which electrons are allowed to tunnel, and can give rise to a region of negative resistance. Such ‘resonant tunnelling diodes’ have been extensively studied in highly ordered crystalline semiconductors such as gallium arsenide, and account for some of the highest-speed electronic devices ever demonstrated. However, previous attempts to realise negative resistance in amorphous materials (e.g. amorphous silicon) have proved unsuccessful.



"This work extends the potential of amorphous carbon electronics to high speed switching at GHz rates, and follows our earlier demonstration of room temperature processing of carbon electronics on plastic" said the lead investigator of the team, Professor Ravi Silva. "Such ground breaking work was only possible due to the flexible funding afforded by the 5-year Portfolio Partnership between the University of Surrey and the Engineering and Physical Sciences Research Council (EPSRC)".

The Surrey devices are made from thin layers of diamond-like carbon, a material which has the added advantage of chemical robustness, thermal stability, high resistance to electrical breakdown, and biocompatibility. It can be deposited over large areas at room temperature, which makes it compatible with low-cost, flexible plastic substrates. The newly demonstrated suitability of diamond-like carbon for quantum electronics may give rise to the establishment of a new family of high speed carbon based high power devices such as tunnel transistors, oscillators and hybrid devices. These devices would offer the possibility of high speed nano-electronics circuits, stable against chemical attack and suitable for high temperature operation, compatible with large area low cost production.

The work was sponsored by the Portfolio Partnership and Carbon Based Electronics Programmes of the Engineering and Physical Sciences Research Council (EPSRC) in the UK.

Stuart Miller | alfa
Weitere Informationen:
http://www.surrey.ac.uk

Weitere Berichte zu: Engineering Partnership Physical Portfolio Tunnelling

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie