Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Nanoschichten knicken, wenn sich Mikrobalken biegen

07.12.2005


Mit einem nur 100 Nanometer feinen Röntgenstrahl als "Nanolupe" lassen sich Defekte und Veränderungen in Kohlenstofffasern im Detail untersuchen. Bild: MPI für Kolloid- und Grenzflächenforschung


Deutsch-österreichisch-französisches Forscherteam beobachtet mit einem hundert Nanometer breiten Röntgenstrahl, wie Nanoschichten in gebogenen Hightech-Karbonfasern knicken können


Hochfeste, ultraleichte und elastische Materialien aus Karbon sind aus dem Hochleistungssport und aus der modernen Luft- und Raumfahrttechnik nicht mehr wegzudenken. Ob Tennisschläger, Rennsportreifen, Hitzeschutzschilder oder sogar Gitarren -Karbonfasern erobern eine wahrlich tragende Rolle in der Werkstoff-Technologie. Der Name bezieht sich dabei auf mikrometerdicke High-Tech-Fasern aus Kohlenstoff, die zur mechanischen Verstärkung anderer Materialien wie Polymere, Metalle oder Keramiken eingesetzt werden. Unter Zug sind solche Fasern zumeist fester als alle anderen bekannten Werkstoffe. Allerdings können Druckbelastungen parallel zur Faserachse zum Ausknicken von Kohlenstoffschichten auf der Nanometerskala führen. Dies ist vergleichbar mit dem Knicken eines langen dünnen Stabes unter Druck.

In einem neuartigen physikalischen Experiment an der Europäischen Synchrotronstrahlungsquelle in Grenoble haben die Forscher aus Potsdam und Wien mehrere, nur wenige tausendstel Millimeter dicke Kohlenstofffasern mit beiden Enden durch dünne Hohlnadeln gefädelt, sodass sich am Ende jeweils eine Schlaufe bildete. Dabei sind die Fasern an der Außenseite dieser Schlaufe gedehnt und an der Innenseite gestaucht mit einer unverformten, neutralen Zone dazwischen, ähnlich einem Biegebalken. Durch Ziehen an den Faserenden kann der Radius der Schlaufe und damit die Stärke der Zug- und Druckspannungen eingestellt werden.


"Das Einzigartige an diesem Experiment", sagt Oskar Paris vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung, "ist der Umstand, dass wir uns viele Längenskalen gleichzeitig ansehen und damit dem Geheimnis des ‚Nanoknickens’ auf die Spur kommen konnten. Mit einem Röntgenstrahl von nur 100 Nanometer Breite, das entspricht einem zehntausendstel Millimeter, können wir die unterschiedlichen Verformungszonen entlang des Faserquerschnittes abtasten. Mit unserer ‚Nanolupe’ - der Beugung ebendieses Röntgenstrahls - konnten wir gleichzeitig die lokale Dehnung der nur wenige Nanometer dicken Kohlenstoffschichten sowie deren Orientierung in Bezug auf die Faserachse direkt ablesen."

Hightech-Karbonfasern bestehen aus graphitähnlichen Kohlenstoffschichten mit starken kovalenten Bindungen der Atome innerhalb der Schichten und sehr schwachen, so genannten Van der Waals-Bindungen zwischen den Schichten. Fast alle physikalischen Eigenschaften dieser Materialien sind daher richtungsabhängig, insbesondere auch die mechanischen Eigenschaften. So sind die Steifigkeit bis zu fünffach und die auf gleiches Gewicht bezogene Festigkeit von Kohlenstofffasern unter Zug mehr als zehnfach höher als die von Stahl. Ihre Druckeigenschaften können damit allerdings nicht mithalten. Diese werden - zusätzlich zur Scherung einzelner Graphitschichten - insbesondere vom Auftreten einer mechanischen Instabilität unter Druck, also dem Knicken von Kohlenstoffschichten auf der Nanometerskala, bestimmt.

Manche Kohlenstofffasern weisen dennoch erstaunlich gute Schereigenschaften auf. Ein "Nanoknicken" wird dann kaum beobachtet, was auf eine hohe Anzahl an starken Querverbindungen zwischen den Kohlenstoffschichten hindeutet. "Könnte man die üblicherweise sehr schwachen Bindungen zwischen den Kohlenstoffschichten gezielt durch solche kovalenten Querverbindungen verstärken, so wären neben manchen Karbonfasern wohl auch die viel gerühmten neuartigen Kohlenstoff-Nanoröhrchen bald reif für ihren Einsatz als Seile mit der höchsten Festigkeit der Welt", stellt Herwig Peterlik von der Universität Wien fest.

Dies ist möglich, allerdings erst seit relativ kurzer Zeit und auch nur unter sehr hohem energetischem und finanziellem Aufwand durch so genannte Elektronenbestrahlung. Der hohe Preis ist auch der Grund, warum die relativ billig herzustellenden Kohlenstofffasern noch lange nicht von den modernen Nanoröhrchen abgelöst werden dürften. Warum aber solche wertvollen Querverbindungen bei der Herstellung von Hightech-Materialien in manchen Kohlenstofffasern entstehen und in manchen nicht, ist noch nicht vollständig geklärt.

Weitere Informationen erhalten Sie von:

Dr. habil Oskar Paris
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam
Tel.: 0331 567-9411
Fax: 0331 567-9402
E-Mail: Oskar.Paris@mpikg.mpg.de

Prof. Herwig Peterlik
Institut für Materialphysik der Universität Wien, Wien
Tel.: +43 (0) 1 4277-51350
Fax: +43 (0) 1 4277-9513
E-Mail: Herwig.Peterlik@univie.ac.at

Katja Schulze (Presse- und Öffentlichkeitsarbeit)
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam
Tel.: 0331 567-9203
Fax: 0331 567-9202
E-Mail: katja.schulze@mpikg.mpg.de

Dr. Bernd Wirsing | idw
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit