Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auch spröde Keramiken lassen sich verformen

06.08.2001



Max-Planck-Forscher gelingt plastische Verformung bruchempfindlicher Keramik / Konsequenzen für technische Anwendung von Keramiken

Strontiumtitanat (SrTiO3), eine bisher bei als extrem bruchempfindlich und spröde bekannte Keramik, lässt sich plastisch verformen. Diese überraschende Entdeckung gelang Materialwissenschaftlern am Max-Planck-Institut für Metallforschung in Stuttgart. Sie berichten darüber in der August-Ausgabe der renommierten Fachzeitschrift "Physical Review Letters" und in der Mai-Ausgabe des "Journal of the American Ceramic Society". Diese neuen Erkenntnisse könnten einige der Konzepte ändern, mit denen keramische Materialien als Ingenieurswerkstoffe heutzutage angewandt werden.


Strontiumtitanat ist ein bedeutender Vertreter einer Gruppe von Oxidkeramiken, die in der kubischen Perowskit-Struktur (als kubisch dichteste Kugelpackung) kristallisieren. Bei normalen Temperaturen verhalten sich die Perowskite wie die meisten keramischen Oxide, einschließlich der üblichen Haushaltkeramiken und der meisten der gesteinsbildenden Mineralien in der Erdkruste - sie sind spröde und bersten wie Glas.

Diese Eigenschaft wurde bisher darauf zurückgeführt, dass sich so genannte Versetzungen nur sehr schwer durch die Kristallstruktur dieser Materialien bewegen können. Unter Versetzungen versteht man Defekte der regulären Kristallstruktur, die als Träger einer dauerhaften plastischen Verformung in den meisten kristallinen Materialien angesehen werden. Bewegt sich eine Versetzung durch einen Kristall, schert sie den Kristall entlang ihres Laufwegs um einen wohldefinierten Verschiebungsvektor ab, vergleichbar einem Teppich, dessen Gesamtverschiebung auf dem Fußboden durch eine kleine Welle erleichtert wird, die sich entlang des Teppichs bewegt.

Die plastische Verformbarkeit von Metallen ist direkt darauf zurückzuführen, wie leicht sich Versetzungen in ihrem Kristallgitter bewegen können. Im Gegensatz dazu erschwert die ionische und kovalente Natur der Bindung in keramischen Oxiden diesen Gleitprozess - bis hin zu hohen Temperaturen um etwa 1000°C bleiben die Versetzungen dann im wesentlichen unbeweglich.

Diesen Mangel an plastischer Verformbarkeit von Strontiumtitanat wollten sich die Forscher am Stuttgarter Max-Planck-Institut für Metallforschung zunutze machen, um die elastischen Größen einer neuen mechanischen Versuchseinrichtung in ihrem Labor zu eichen. Zu ihrer Überraschung mussten sie jedoch feststellen, dass sich die bekanntermaßen harte einkristalline Druckprobe aus SrTiO3 bei Raumtemperatur mit einer niedrigen Fließspannung von 120 MPa (vergleichbar der von Aluminium oder von Kupferlegierungen) plastisch verformen ließ und dabei plastische Dehnungen bis zu 7% erreicht wurden.

Die Stuttgarter Forscher begannen daraufhin das Verhaltens von SrTiO3 ausführlich zu untersuchen und entdeckten, dass Strontiumtitanat-Einkristalle in Druckversuchen nicht nur den üblichen Übergang vom formbaren, duktilen Verhalten bei hohen Temperaturen (oberhalb von etwa 1000°C) zu sprödem Verhalten unterhalb dieses Temperaturbereichs vollzogen. Vielmehr fanden sie heraus, dass sich in dem Material unterhalb von 600 °C ein zweiter Übergang zurück zu formbarem Verhalten vollzieht. Die Abbildung zeigt die Fließspannungen, die bei den Druckversuchen bei verschiedenen Temperaturen entlang zweier verschiedener Kristallorientierungen von Strontiumtitanat-Einkristallen gemessen wurden.

Eine detaillierte mikroskopische Analyse von SrTiO3 ergab; dass die Verformung in den Hoch- und Tieftemperaturbereichen von Versetzungen desselben Typs getragen werden. Die Forscher schließen hieraus, dass diese Versetzungen in Strontiumtitanat zwei unterschiedliche Versetzungskernstrukturen besitzen müssen. Da die Versetzungskernstruktur weitgehend durch die Symmetrie und Kristallstruktur des Materials bestimmt wird, liegt nahe zu vermuten, dass solche unterschiedlichen Kernstrukturen von Versetzungen auch in andern Perowskitischen-Keramiken vorkommen könnten.

Die Stuttgarter Forscher wollen nun ihre Untersuchungen auf andere Verformungsmoden und anwendungsorientierte Fragen ausdehnen. Denn nachdem sie zeigen konnten, dass das Paradigma unbeweglicher Versetzungen in keramischen Oxiden bei Raumtemperatur nicht mehr gilt, scheint es angebracht, auch einige Ingenieurskonzepte, die auf der Anwendung von Keramiken aufbauen, neu zu überdenken. Sicherlich sind Keramiken weiterhin spröde und brechen, wenn sie auf den Boden fallen. Doch es kann gut möglich sein, so vermuten die Wissenschaftler, dass man diese Keramiken bei tiefen (oder sogar kryogenen) Temperaturen doch verformen kann. In ähnlicher Weise könnte Sandstrahlen, das in der Oberflächenschicht von Metallen eine erhöhte Versetzungsdichte mit einem vorteilhaften Druckspannungszustand erzeugt, in Keramiken eine ähnliche Wirkung erzielen. Diese und andere Überlegungen sind jetzt Ziel weiterführender Untersuchungen. Daneben wollen die Forscher zusätzliche mikroskopische Untersuchungen vornehmen, um die bisher offensichtlich nicht bekannten Kernstrukturen dieser Versetzungen genauer aufzuklären.

Dieter Brunner | Max-Planck-Institut für Metallfo

Weitere Berichte zu: Keramik Kristallstruktur Oxid SrTiO Verformung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ressortforschungseinrichtungen wollen Nanomaterialien sicherer und umweltverträglicher machen
26.09.2016 | Bundesanstalt für Materialforschung und -prüfung (BAM)

nachricht Winzige Defekte stören die Informationsübertragung zwischen organischen Magneten und Metalloxiden
21.09.2016 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenboost für künstliche Intelligenz

Intelligente Maschinen, die selbständig lernen, gelten als Zukunftstrend. Forscher der Universität Innsbruck und des Joint Quantum Institute in Maryland, USA, loten nun in der Fachzeitschrift Physical Review Letters aus, wie Quantentechnologien dabei helfen können, die Methoden des maschinellen Lernens weiter zu verbessern.

In selbstfahrenden Autos, IBM's Watson oder Google's AlphaGo sind Computerprogramme am Werk, die aus Erfahrungen lernen können. Solche Maschinen werden im Zuge...

Im Focus: Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt

Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit Kollegen der Freien Universität Berlin ein neues Molekül entdeckt: Die Eisenverbindung in der seltenen Oxidationsstufe +4 gehört zu den Ferrocenen und ist äußerst schwierig zu synthetisieren.

Metallocene werden umgangssprachlich auch als Sandwichverbindungen bezeichnet. Sie bestehen aus zwei organischen ringförmigen Verbindungen, den...

Im Focus: Neue Entwicklungen in der Asphären-Messtechnik

Kompetenzzentrum Ultrapräzise Oberflächenbearbeitung (CC UPOB) lädt zum Expertentreffen im März 2017 ein

Ob in Weltraumteleskopen, deren Optiken trotz großer Abmessungen nanometergenau gefertigt sein müssen, in Handykameras oder in Endoskopen − Asphären kommen in...

Im Focus: Mit OLED Mikrodisplays in Datenbrillen zur verbesserten Mensch-Maschine-Interaktion

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP arbeitet seit Jahren an verschiedenen Entwicklungen zu OLED-Mikrodisplays, die auf organischen Halbleitern basieren. Durch die Integration einer Bildsensorfunktion direkt im Mikrodisplay, lässt sich u.a. die Augenbewegung in Datenbrillen aufnehmen und zur Steuerung von Display-Inhalten nutzen. Das verbesserte Konzept wird erstmals auf der Augmented World Expo Europe (AWE), vom 18. – 19. Oktober 2016, in Berlin, Stand B25 vorgestellt.

„Augmented Reality“ (erweiterte Realität) und „Wearable Displays“ (tragbare Displays) sind Schlagworte, denen man mittlerweile fast täglich begegnet. Beide...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von der Probe zum digitalen Modell - MikroskopieTrends ´16

26.09.2016 | Veranstaltungen

300 Experten diskutieren auf größter Entrepreneurship-Konferenz im deutschsprachigen Raum

26.09.2016 | Veranstaltungen

Idealer Ablauf für GMP-konforme Projekte

26.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phänotyp auf Knopfdruck

26.09.2016 | Biowissenschaften Chemie

Effiziente elektrische Antriebe: TU Graz startet Christian Doppler Labor

26.09.2016 | Maschinenbau

Methodenentwicklung an BESSY II: Automatische Auswertung beschleunigt die Suche nach neuen Wirkstoffen

26.09.2016 | Biowissenschaften Chemie