Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auch spröde Keramiken lassen sich verformen

06.08.2001



Max-Planck-Forscher gelingt plastische Verformung bruchempfindlicher Keramik / Konsequenzen für technische Anwendung von Keramiken

Strontiumtitanat (SrTiO3), eine bisher bei als extrem bruchempfindlich und spröde bekannte Keramik, lässt sich plastisch verformen. Diese überraschende Entdeckung gelang Materialwissenschaftlern am Max-Planck-Institut für Metallforschung in Stuttgart. Sie berichten darüber in der August-Ausgabe der renommierten Fachzeitschrift "Physical Review Letters" und in der Mai-Ausgabe des "Journal of the American Ceramic Society". Diese neuen Erkenntnisse könnten einige der Konzepte ändern, mit denen keramische Materialien als Ingenieurswerkstoffe heutzutage angewandt werden.


Strontiumtitanat ist ein bedeutender Vertreter einer Gruppe von Oxidkeramiken, die in der kubischen Perowskit-Struktur (als kubisch dichteste Kugelpackung) kristallisieren. Bei normalen Temperaturen verhalten sich die Perowskite wie die meisten keramischen Oxide, einschließlich der üblichen Haushaltkeramiken und der meisten der gesteinsbildenden Mineralien in der Erdkruste - sie sind spröde und bersten wie Glas.

Diese Eigenschaft wurde bisher darauf zurückgeführt, dass sich so genannte Versetzungen nur sehr schwer durch die Kristallstruktur dieser Materialien bewegen können. Unter Versetzungen versteht man Defekte der regulären Kristallstruktur, die als Träger einer dauerhaften plastischen Verformung in den meisten kristallinen Materialien angesehen werden. Bewegt sich eine Versetzung durch einen Kristall, schert sie den Kristall entlang ihres Laufwegs um einen wohldefinierten Verschiebungsvektor ab, vergleichbar einem Teppich, dessen Gesamtverschiebung auf dem Fußboden durch eine kleine Welle erleichtert wird, die sich entlang des Teppichs bewegt.

Die plastische Verformbarkeit von Metallen ist direkt darauf zurückzuführen, wie leicht sich Versetzungen in ihrem Kristallgitter bewegen können. Im Gegensatz dazu erschwert die ionische und kovalente Natur der Bindung in keramischen Oxiden diesen Gleitprozess - bis hin zu hohen Temperaturen um etwa 1000°C bleiben die Versetzungen dann im wesentlichen unbeweglich.

Diesen Mangel an plastischer Verformbarkeit von Strontiumtitanat wollten sich die Forscher am Stuttgarter Max-Planck-Institut für Metallforschung zunutze machen, um die elastischen Größen einer neuen mechanischen Versuchseinrichtung in ihrem Labor zu eichen. Zu ihrer Überraschung mussten sie jedoch feststellen, dass sich die bekanntermaßen harte einkristalline Druckprobe aus SrTiO3 bei Raumtemperatur mit einer niedrigen Fließspannung von 120 MPa (vergleichbar der von Aluminium oder von Kupferlegierungen) plastisch verformen ließ und dabei plastische Dehnungen bis zu 7% erreicht wurden.

Die Stuttgarter Forscher begannen daraufhin das Verhaltens von SrTiO3 ausführlich zu untersuchen und entdeckten, dass Strontiumtitanat-Einkristalle in Druckversuchen nicht nur den üblichen Übergang vom formbaren, duktilen Verhalten bei hohen Temperaturen (oberhalb von etwa 1000°C) zu sprödem Verhalten unterhalb dieses Temperaturbereichs vollzogen. Vielmehr fanden sie heraus, dass sich in dem Material unterhalb von 600 °C ein zweiter Übergang zurück zu formbarem Verhalten vollzieht. Die Abbildung zeigt die Fließspannungen, die bei den Druckversuchen bei verschiedenen Temperaturen entlang zweier verschiedener Kristallorientierungen von Strontiumtitanat-Einkristallen gemessen wurden.

Eine detaillierte mikroskopische Analyse von SrTiO3 ergab; dass die Verformung in den Hoch- und Tieftemperaturbereichen von Versetzungen desselben Typs getragen werden. Die Forscher schließen hieraus, dass diese Versetzungen in Strontiumtitanat zwei unterschiedliche Versetzungskernstrukturen besitzen müssen. Da die Versetzungskernstruktur weitgehend durch die Symmetrie und Kristallstruktur des Materials bestimmt wird, liegt nahe zu vermuten, dass solche unterschiedlichen Kernstrukturen von Versetzungen auch in andern Perowskitischen-Keramiken vorkommen könnten.

Die Stuttgarter Forscher wollen nun ihre Untersuchungen auf andere Verformungsmoden und anwendungsorientierte Fragen ausdehnen. Denn nachdem sie zeigen konnten, dass das Paradigma unbeweglicher Versetzungen in keramischen Oxiden bei Raumtemperatur nicht mehr gilt, scheint es angebracht, auch einige Ingenieurskonzepte, die auf der Anwendung von Keramiken aufbauen, neu zu überdenken. Sicherlich sind Keramiken weiterhin spröde und brechen, wenn sie auf den Boden fallen. Doch es kann gut möglich sein, so vermuten die Wissenschaftler, dass man diese Keramiken bei tiefen (oder sogar kryogenen) Temperaturen doch verformen kann. In ähnlicher Weise könnte Sandstrahlen, das in der Oberflächenschicht von Metallen eine erhöhte Versetzungsdichte mit einem vorteilhaften Druckspannungszustand erzeugt, in Keramiken eine ähnliche Wirkung erzielen. Diese und andere Überlegungen sind jetzt Ziel weiterführender Untersuchungen. Daneben wollen die Forscher zusätzliche mikroskopische Untersuchungen vornehmen, um die bisher offensichtlich nicht bekannten Kernstrukturen dieser Versetzungen genauer aufzuklären.

Dieter Brunner | Max-Planck-Institut für Metallfo

Weitere Berichte zu: Keramik Kristallstruktur Oxid SrTiO Verformung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten