Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auch spröde Keramiken lassen sich verformen

06.08.2001



Max-Planck-Forscher gelingt plastische Verformung bruchempfindlicher Keramik / Konsequenzen für technische Anwendung von Keramiken

Strontiumtitanat (SrTiO3), eine bisher bei als extrem bruchempfindlich und spröde bekannte Keramik, lässt sich plastisch verformen. Diese überraschende Entdeckung gelang Materialwissenschaftlern am Max-Planck-Institut für Metallforschung in Stuttgart. Sie berichten darüber in der August-Ausgabe der renommierten Fachzeitschrift "Physical Review Letters" und in der Mai-Ausgabe des "Journal of the American Ceramic Society". Diese neuen Erkenntnisse könnten einige der Konzepte ändern, mit denen keramische Materialien als Ingenieurswerkstoffe heutzutage angewandt werden.


Strontiumtitanat ist ein bedeutender Vertreter einer Gruppe von Oxidkeramiken, die in der kubischen Perowskit-Struktur (als kubisch dichteste Kugelpackung) kristallisieren. Bei normalen Temperaturen verhalten sich die Perowskite wie die meisten keramischen Oxide, einschließlich der üblichen Haushaltkeramiken und der meisten der gesteinsbildenden Mineralien in der Erdkruste - sie sind spröde und bersten wie Glas.

Diese Eigenschaft wurde bisher darauf zurückgeführt, dass sich so genannte Versetzungen nur sehr schwer durch die Kristallstruktur dieser Materialien bewegen können. Unter Versetzungen versteht man Defekte der regulären Kristallstruktur, die als Träger einer dauerhaften plastischen Verformung in den meisten kristallinen Materialien angesehen werden. Bewegt sich eine Versetzung durch einen Kristall, schert sie den Kristall entlang ihres Laufwegs um einen wohldefinierten Verschiebungsvektor ab, vergleichbar einem Teppich, dessen Gesamtverschiebung auf dem Fußboden durch eine kleine Welle erleichtert wird, die sich entlang des Teppichs bewegt.

Die plastische Verformbarkeit von Metallen ist direkt darauf zurückzuführen, wie leicht sich Versetzungen in ihrem Kristallgitter bewegen können. Im Gegensatz dazu erschwert die ionische und kovalente Natur der Bindung in keramischen Oxiden diesen Gleitprozess - bis hin zu hohen Temperaturen um etwa 1000°C bleiben die Versetzungen dann im wesentlichen unbeweglich.

Diesen Mangel an plastischer Verformbarkeit von Strontiumtitanat wollten sich die Forscher am Stuttgarter Max-Planck-Institut für Metallforschung zunutze machen, um die elastischen Größen einer neuen mechanischen Versuchseinrichtung in ihrem Labor zu eichen. Zu ihrer Überraschung mussten sie jedoch feststellen, dass sich die bekanntermaßen harte einkristalline Druckprobe aus SrTiO3 bei Raumtemperatur mit einer niedrigen Fließspannung von 120 MPa (vergleichbar der von Aluminium oder von Kupferlegierungen) plastisch verformen ließ und dabei plastische Dehnungen bis zu 7% erreicht wurden.

Die Stuttgarter Forscher begannen daraufhin das Verhaltens von SrTiO3 ausführlich zu untersuchen und entdeckten, dass Strontiumtitanat-Einkristalle in Druckversuchen nicht nur den üblichen Übergang vom formbaren, duktilen Verhalten bei hohen Temperaturen (oberhalb von etwa 1000°C) zu sprödem Verhalten unterhalb dieses Temperaturbereichs vollzogen. Vielmehr fanden sie heraus, dass sich in dem Material unterhalb von 600 °C ein zweiter Übergang zurück zu formbarem Verhalten vollzieht. Die Abbildung zeigt die Fließspannungen, die bei den Druckversuchen bei verschiedenen Temperaturen entlang zweier verschiedener Kristallorientierungen von Strontiumtitanat-Einkristallen gemessen wurden.

Eine detaillierte mikroskopische Analyse von SrTiO3 ergab; dass die Verformung in den Hoch- und Tieftemperaturbereichen von Versetzungen desselben Typs getragen werden. Die Forscher schließen hieraus, dass diese Versetzungen in Strontiumtitanat zwei unterschiedliche Versetzungskernstrukturen besitzen müssen. Da die Versetzungskernstruktur weitgehend durch die Symmetrie und Kristallstruktur des Materials bestimmt wird, liegt nahe zu vermuten, dass solche unterschiedlichen Kernstrukturen von Versetzungen auch in andern Perowskitischen-Keramiken vorkommen könnten.

Die Stuttgarter Forscher wollen nun ihre Untersuchungen auf andere Verformungsmoden und anwendungsorientierte Fragen ausdehnen. Denn nachdem sie zeigen konnten, dass das Paradigma unbeweglicher Versetzungen in keramischen Oxiden bei Raumtemperatur nicht mehr gilt, scheint es angebracht, auch einige Ingenieurskonzepte, die auf der Anwendung von Keramiken aufbauen, neu zu überdenken. Sicherlich sind Keramiken weiterhin spröde und brechen, wenn sie auf den Boden fallen. Doch es kann gut möglich sein, so vermuten die Wissenschaftler, dass man diese Keramiken bei tiefen (oder sogar kryogenen) Temperaturen doch verformen kann. In ähnlicher Weise könnte Sandstrahlen, das in der Oberflächenschicht von Metallen eine erhöhte Versetzungsdichte mit einem vorteilhaften Druckspannungszustand erzeugt, in Keramiken eine ähnliche Wirkung erzielen. Diese und andere Überlegungen sind jetzt Ziel weiterführender Untersuchungen. Daneben wollen die Forscher zusätzliche mikroskopische Untersuchungen vornehmen, um die bisher offensichtlich nicht bekannten Kernstrukturen dieser Versetzungen genauer aufzuklären.

Dieter Brunner | Max-Planck-Institut für Metallfo

Weitere Berichte zu: Keramik Kristallstruktur Oxid SrTiO Verformung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscher spinnen künstliche Seide aus Kuhmolke
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie

Experiment zu ultra-kaltem Rubidium hebt mit Forschungsrakete vom Boden ab

24.01.2017 | Physik Astronomie