Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In der Dimension von Atomen

20.01.2005


Materialforscher entwickeln feinste Beschichtungen für Medizintechnik und Raumfahrt


Viele Teile des menschlichen Körpers sind heute ersetzbar: Organteile, Adern, Knochen, Gelenke, ja ganze Füße und Arme. Bei Maschinen sind alle Teile ersetzbar und sie sind - wie die Materialien von Flugzeugen und Raketen zeigen -extremen Belastungen ausgesetzt. Dennoch macht sich kaum jemand in der Öffentlichkeit Gedanken darum, wieso diese Teile nicht vom ’Körper’ abgestoßen werden, warum sie sich so gut an ihre Umgebung anpassen oder was sie so haltbar macht. Dieses Fragen gehören in den Bereich der Materialforschung.

"Die Entwicklung, Herstellung und Verarbeitung von neuen Materialien für innovative Anwendungen hat herausragende Bedeutung für künftige Technologien", erklärt Dr. Dimitri Rakov. Im Rahmen eines Kooperationsprogramms und mit Unterstützung der Alexander von Humboldt-Stiftung arbeiten die russischen Wissenschaftler Dr. Vladimir Levchenko und Dr. Dimitri Rakov vom Institut für Ingenieurwissenschaften der Russischen Akademie der Wissenschaft und der TU-Professor Dr.-Ing. Jürgen Thorbeck vom Institut für Luft- und Raumfahrt im Bereich neuer Konstruktionen und Materialien für die Luft- und Raumfahrt. Sie analysieren und synthetisieren neue Materialien und sie entwickeln Anwendungspotenziale dafür. Dabei geht es vor allem um das monokristalline Karbon. Kohlenstoff kommt in verschiedenen Erscheinungsformen und Mikrostrukturen vor. In den letzten Jahren wurden diamantähnliche Kohlenstoffschichten entwickelt, die besonders verschleißbeständig, reibungsmindernd und sehr hart sind. Für Anwendungen in der Medizintechnik, in der Werkzeugtechnik oder in der Luft- und Raumfahrt müssen sie außerdem besonders dünn aufgetragen werden können. Nun entwickelte die Gruppe mit Hilfe der "Levchenko-Methode" verschiedene monokristalline Beschichtungen, die durch einen besonderen Prozessschritt so hergestellt werden können, dass deren Dicke im Bereich von weniger als 50 Nanometern liegt. Um zu ermessen wie dünn das ist, muss man wissen, dass ein Nanometer nur ein Hunderttausendstel des Durchmessers eines Menschenhaares misst - die Dimension von Atomen.


Doch nicht nur die Dicke der Beschichtung spielt eine Rolle. Mit entscheidend sind auch andere Eigenschaften des monokristallinen Karbons, das es so gut einsetzbar in den genannten Techniken macht: Neben dem geringen Reibwert und der hohen Verschleißbeständigkeit hat es eine hohe chemische Beständigkeit, eine große Adhäsion und weist eine gute physiologische Verträglichkeit auf. "Die Arbeitsgruppe würde sich freuen", sagt Dr. Dimitri Rakov, der einige Zeit als Humboldt-Stipendiat an der TU Berlin verbracht hat, "wenn sich weitere Fachdisziplinen mit Grundlagencharakter, wie Werkstofftechnik oder Oberflächentechnik für eine Mitarbeit interessierten." Patricia Pätzold

Weitere Informationen erteilen Ihnen gerne:

Prof. Dr. Jürgen Thorbeck
Institut für Luft- und Raumfahrt der TU Berlin
Tel.: 314- 22873
E-Mail: Juergen.Thorbeck@tu-berlin.de

Dr. Dimitri Rakov
Institut für Ingenieurwissenschaften der Russischen Akademie der Wissenschaft
E-Mail: rakov@mail.com

Ramona Ehret | idw
Weitere Informationen:
http://www.tu-berlin.de

Weitere Berichte zu: Atom Beschichtung Luft- und Raumfahrt Raumfahrt

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie