Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Nase aus Strontiumtitanat soll Lambda-Sonde ersetzen

18.06.2001

Die Lambda-Sonde des Katalysators auf der Basis von Zirkoniumdioxid versagt bei Temperaturen oberhalb von 600 Grad Celsius und kann daher nicht in unmittelbarer Nähe zum Verbrennungsort, den sehr heißen Zylindern, sondern erst im kühleren Abgasrohr die Zusammensetzung des Gases messen. So reguliert sie immer einen Augenblick zu spät. Als schneller Sauerstoffsensor bei hohen Temperaturen kommt Strontiumtitanat (SrTiO3) in Betracht. Ein deutscher Automobilhersteller versuchte es einzusetzen. Leider waren die Versuche jedoch nicht von Erfolg gekrönt, denn nach einigen Monaten bildeten sich auf dem Material "blinde Flecken". Strontiumoxidinseln (SrO) auf der Oberfläche senkten die Empfindlichkeit des Sensors.

Die wissenschaftlichen Mitarbeiter Dipl.Chem. Anissa Gunhold und Dr. Karsten Gömann erforschen nun die Ursachen der Bildung dieser Schichten. Projektleiter des interdisziplinären Forschungsvorhabens sind Professor Dr.-Ing. Günter Borchardt vom Institut für Metallurgie und Dr. Wolfgang Maus-Friedrichs vom Institut für Physik und Physikalische Technologien. Die Deutsche Forschungsgemeinschaft fördert das Vorhaben.

Wie funktioniert die "Nase" aus Strontiumtitanat? Dr. Maus-Friedrichs erklärt: "In dotierten Strontiumtitanatkristallen entstehen in Abhängigkeit von Temperatur, Dotierung und äußerem Sauerstoffpartialdruck Sauerstoffleerstellen. Wegen der notwendigen Ladungsneutralität werden sie durch quasi-gebundene Elektronen kompensiert. Diese Elektronen sind leicht beweglich. Legt man nun ein elektrisches Feld an, so fließt ein Strom. Zwischen der Anzahl der Sauerstoffleerstellen und dem außen anliegenden Sauerstoffpartialdruck entsteht ein dynamisches Gleichgewicht, in dem kontinuierlich Leerstellen aufgefüllt bzw. neue Leerstellen geschaffen werden. Die elektrische Leitfähigkeit wird dabei um so geringer je höher der Sauerstoffpartialdruck in der umgebenden Gasatmosphäre ist." Dieses "schöne" Messprinzip funktioniert auch noch bei Temperaturen über 1000 Grad Celsius. "Nach einiger Zeit bilden sich aber die erwähnten blinden Flecke. Wir wollen verstehen, wie es zur Bildung dieser isolierenden Inseln kommt und ob man diese Bildung verhindern kann", sagt Dipl. Chem. Anissa Gunhold. Hierzu sollen die chemische Zusammensetzung und die Anordnung der Atome im Kristallgitter der verschiedenen Oberflächenbereiche experimentell bestimmt werden. Zunächst sollen Einkristalle, später polykristalline Strontiumtitanatfilme untersucht werden. Die Rolle der einzelnen Einflussfaktoren, also Art und Konzentration der Dotierung, Sauerstoffpartialdruck, Glühtemperatur und -zeit, muss geklärt werden. Dann können Strategien entworfen werden, wie die Bildung der isolierenden Bereiche vermieden werden kann, d. h. wie die Strontiumtitanat-Nase ihre Empfindlichkeit behalten kann.

Weitere Informationen:


Sekundärelektronenmikroskop (SEM)-Aufnahme der SrTiO3-Oberfläche. Die unterschiedlichen SrO-Inseltypen sind gut zu erkennen.


Institut für Physik und Physikalische Technologien
TU Clausthal

Dipl. Chem.


Anissa Gunhold
Leibnizstraße 4
38678 Clausthal-Zellerfeld

Tel.: 05323 / 72-2756


Fax: 05323 / 72-3600

E-Mail: anissa.gunhold@tu-clausthal.de

Jochen Brinkmann | idw
Weitere Informationen:
http://www.pe.tu-clausthal.de/ippt/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen