Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Why Calcium Improves a High-Temperature Superconductor

08.06.2004


Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have found evidence to prove why adding a small amount of calcium to a common high-temperature superconductor significantly increases the amount of electric current the material can carry. This research may be a first step toward developing commercial applications for high-temperature superconducting materials. The results appear in the May 15, 2004 issue of Physical Review Letters.


Yimei Zhu (left) and Marvin Schofield, in front of the transmission electron microscope they used to perform the research



“Many materials classified as high-temperature superconductors exhibit good properties only in single-crystal form and are actually unsuitable for practical applications, such as high-efficiency electrical wire, because their bulk composition – individual crystalline grains – disrupts the flow of electrons,” said Yimei Zhu, a Brookhaven physicist who led the research.

... mehr zu:
»Science »Why »YBCO


“But for practical applications in which large electric currents need to be transported, such as power cables, the polycrystalline forms must be used. These polycrystalline materials carry a very low current compared to their single-crystal counterparts,” he said.

This is due to the problem of grain boundaries – the interfaces created between adjacent grains. At grain boundaries, incoming electrons slow down or change direction, thus losing momentum and releasing the lost energy as heat. This results in low electron flow across the boundaries – exactly the opposite of “good” superconductor behavior.

Researchers theorized that electric voltage barriers at the grain boundaries are the cause of this problem. Now, the Brookhaven scientists have found evidence to support this theory.

“We discovered why grain boundaries are the predominant factor that limits the current flow in these materials,” said Brookhaven physicist Marvin Schofield, the paper’s principle author.

“By understanding grain boundary behavior, we can engineer grain boundaries with improved properties. This is a major challenge in superconductor research, which may lead to the commercialization of high-temperature superconducting materials that could revolutionize our daily lives in the near future.”

Scientists worldwide have studied YBCO, a high-temperature superconductor named for the elements it contains – yttrium, barium, copper, and oxygen. They know that it conducts significantly better when it is “doped” with calcium, but have not known, until now, why this is true. The Brookhaven scientists determined this by comparing calcium-doped YBCO to undoped YBCO.

The evidence lies in the areas within grain boundaries in which adjacent grains are most mismatched. To visualize this, picture a centimeter-based ruler next to an inch-based one, where the tick marks on each ruler represent the positions of atoms in the crystal structure of two adjacent, slightly different grains. The marks will match in some cases, nearly match in others, and misalign completely in the rest.

In undoped YBCO, the scientists found, the electrons encounter the most electrical resistance at the most misaligned regions, where the voltage barrier is wide and high. Doping YBCO with calcium causes these regions to shrink, both in width and height. As a result, Schofield and his colleagues determined that calcium doping increases the current across the grain boundary by 35 percent.

To perform the research, the Brookhaven scientists used a YBCO “bicrystal,” a type of crystal grown to contain just one grain boundary, much like two very large grains merged together. The electromagnetic properties of bicrystals are well characterized, allowing the researchers to pinpoint what happens to the electrons at the boundary upon calcium doping, using the results as a model for the overall material. Bicrystals eliminate the impossible task of isolating one boundary out of thousands in the material sample.

To closely examine the bicrystal grain boundary, the scientists used a transmission electron microscope (TEM), a device that uses electrons as tiny probes to “see” inside materials. A sample is placed inside the TEM and bombarded with electrons. As the electrons pass through the sample, they are scattered away from the charged regions of the material. When they emerge, they carry information about the electric and magnetic fields within the sample. This information is then retrieved by a method known as electron holography.

“With electron holography,” Schofield explained, “we can see exactly what the electrons in the material see at the grain boundary. Thus, this method takes us a tremendous step closer to understanding the role grain boundaries play in the properties of real materials.”

Additional collaborators instrumental in this research were Marco Beleggia, of Brookhaven Lab, and Karsten Guth and Christian Jooss, both of the University of Gottingen in Germany. The work was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science and the German Research Foundation.

Karen McNulty Walsh | BNL
Weitere Informationen:
http://www.bnl.gov/bnlweb/pubaf/pr/2004/bnlpr060704.htm

Weitere Berichte zu: Science Why YBCO

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen