Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Why Calcium Improves a High-Temperature Superconductor


Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have found evidence to prove why adding a small amount of calcium to a common high-temperature superconductor significantly increases the amount of electric current the material can carry. This research may be a first step toward developing commercial applications for high-temperature superconducting materials. The results appear in the May 15, 2004 issue of Physical Review Letters.

Yimei Zhu (left) and Marvin Schofield, in front of the transmission electron microscope they used to perform the research

“Many materials classified as high-temperature superconductors exhibit good properties only in single-crystal form and are actually unsuitable for practical applications, such as high-efficiency electrical wire, because their bulk composition – individual crystalline grains – disrupts the flow of electrons,” said Yimei Zhu, a Brookhaven physicist who led the research.

... mehr zu:
»Science »Why »YBCO

“But for practical applications in which large electric currents need to be transported, such as power cables, the polycrystalline forms must be used. These polycrystalline materials carry a very low current compared to their single-crystal counterparts,” he said.

This is due to the problem of grain boundaries – the interfaces created between adjacent grains. At grain boundaries, incoming electrons slow down or change direction, thus losing momentum and releasing the lost energy as heat. This results in low electron flow across the boundaries – exactly the opposite of “good” superconductor behavior.

Researchers theorized that electric voltage barriers at the grain boundaries are the cause of this problem. Now, the Brookhaven scientists have found evidence to support this theory.

“We discovered why grain boundaries are the predominant factor that limits the current flow in these materials,” said Brookhaven physicist Marvin Schofield, the paper’s principle author.

“By understanding grain boundary behavior, we can engineer grain boundaries with improved properties. This is a major challenge in superconductor research, which may lead to the commercialization of high-temperature superconducting materials that could revolutionize our daily lives in the near future.”

Scientists worldwide have studied YBCO, a high-temperature superconductor named for the elements it contains – yttrium, barium, copper, and oxygen. They know that it conducts significantly better when it is “doped” with calcium, but have not known, until now, why this is true. The Brookhaven scientists determined this by comparing calcium-doped YBCO to undoped YBCO.

The evidence lies in the areas within grain boundaries in which adjacent grains are most mismatched. To visualize this, picture a centimeter-based ruler next to an inch-based one, where the tick marks on each ruler represent the positions of atoms in the crystal structure of two adjacent, slightly different grains. The marks will match in some cases, nearly match in others, and misalign completely in the rest.

In undoped YBCO, the scientists found, the electrons encounter the most electrical resistance at the most misaligned regions, where the voltage barrier is wide and high. Doping YBCO with calcium causes these regions to shrink, both in width and height. As a result, Schofield and his colleagues determined that calcium doping increases the current across the grain boundary by 35 percent.

To perform the research, the Brookhaven scientists used a YBCO “bicrystal,” a type of crystal grown to contain just one grain boundary, much like two very large grains merged together. The electromagnetic properties of bicrystals are well characterized, allowing the researchers to pinpoint what happens to the electrons at the boundary upon calcium doping, using the results as a model for the overall material. Bicrystals eliminate the impossible task of isolating one boundary out of thousands in the material sample.

To closely examine the bicrystal grain boundary, the scientists used a transmission electron microscope (TEM), a device that uses electrons as tiny probes to “see” inside materials. A sample is placed inside the TEM and bombarded with electrons. As the electrons pass through the sample, they are scattered away from the charged regions of the material. When they emerge, they carry information about the electric and magnetic fields within the sample. This information is then retrieved by a method known as electron holography.

“With electron holography,” Schofield explained, “we can see exactly what the electrons in the material see at the grain boundary. Thus, this method takes us a tremendous step closer to understanding the role grain boundaries play in the properties of real materials.”

Additional collaborators instrumental in this research were Marco Beleggia, of Brookhaven Lab, and Karsten Guth and Christian Jooss, both of the University of Gottingen in Germany. The work was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science and the German Research Foundation.

Karen McNulty Walsh | BNL
Weitere Informationen:

Weitere Berichte zu: Science Why YBCO

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops