Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Veredelte Siliziumstrukturen für kostengünstigere Produktion von Solarzellen

07.06.2004


Am IKZ laufen Experimente, um Solarzellen billiger als bisher herstellen zu können

... mehr zu:
»IKZ »Silizium »Solarzelle »Wafer »Wirkungsgrad

Der Ölpreis steigt auf Rekordniveau, Experten befürchten schon Gefahren für die Weltwirtschaft. Da wird der Ruf nach erneuerbaren Energien wieder lauter. Die Photovoltaik gehört dazu. Doch es gibt ein großes Problem bei der Erzeugung von elektrischem Strom aus Sonnenlicht: das Kosten-Leistungs-Verhältnis. Daher streben Unternehmen und Wissenschaftler danach, den Wirkungsgrad zu erhöhen oder die Solarzellen günstiger herzustellen. Am Berliner Institut für Kristallzüchtung laufen hierzu mehrere Projekte. Einer der verantwortlichen Wissenschaftler dafür ist Dr. Helge Riemann, Experte für Silizium.

Das Halbleitermaterial Silizium ist der wichtigste Baustoff für die Elektronik ebenso wie für Solarzellen. Seine chemischen und physikalischen Eigenschaften führen dazu, dass eindringendes Licht so genannte Ladungsträgerpaare – negative Elektronen und positive „Löcher“ – erzeugt. Die Sonnenstrahlen werden also in elektrische Energie umgewandelt. „Silizium-Solarzellen als Massenprodukt haben einen typischen Wirkungsgrad von 14 bis 16 Prozent“, sagt Riemann. Die meisten Solarzellen aus Silizium sind polykristallin, sie bestehen aus vielen Kristallen.


Es wurden aber auch schon Wirkungsgrade von 23 bis 24 Prozent erreicht. „In Japan sogar für Solarzellen aus der Serienfertigung“, betont Riemann. Die Steigerung um fünfzig Prozent erfordert jedoch eine fast perfekte Kristallstruktur. Solche „Einkristalle“ sind hoch rein und bieten mehr Ausbeute. Sie sind allerdings auch weitaus teurer als herkömmliches Solar-Silizium.

Woran arbeiten nun Riemann und seine Kollegen am IKZ? „Wir wollen kostengünstigere Solarzellen ermöglichen“, sagt Riemann. Dabei verfolgt man am IKZ mehrere Ansätze. Zum einen arbeiten die Wissenschaftler daran, blockförmiges Silizium herzustellen. Bislang sind die meisten gezüchteten Kristalle – ob poly- oder einkristallin – rund. Man spricht von Stäben. Der Durchmesser hoch reiner Kristalle beträgt maximal 200 Millimeter; „das ist aber schon Weltrekord“, sagt Riemann. Aus diesen Stäben können runde Scheiben gesägt werden, die Wafer. Das Problem: Diese Wafer müssen große Solar-Panels ausfüllen, also in eine eckige Form geschnitten werden. Das gibt viel Abfall.

Besser wäre es, gleich viereckige Wafer aus Silizium zu erzeugen. Geschmolzenes Silizium einfach in eine rechteckige Form zu gießen, geht nicht gut. Silizium ist nämlich extrem reaktionsfreudig und verbindet sich mit nahezu allen bekannten Materialien. Riemann formuliert es salopp: „Das Zeug klebt an allem fest.“ Will man den gegossenen Block lösen, zerbricht entweder die Form oder der Block. „Meistens beides“, sagt der Forscher.

Daher wählen die IKZ-Experten einen anderen Weg. Sie versuchen, ohne Gussform Blöcke herzustellen. Eine bekannte berührungsfreie Methode heißt Floating-Zone- Verfahren (kurz: FZ-Verfahren) und ist Standard für runde Kristalle. „Wir versuchen herauszufinden, wie man den Querschnitt eines Silizium-Stabes im FZ-Prozess so verformen kann, dass für quadratische Wafer weniger Abfall und Ausschuss anfällt“, berichtet Riemann, „Das Material besser auszunutzen ist selbst dann noch interessant, wenn es nur polykristallin wächst und der Wirkungsgrad der Zelle sinkt.“

Ein zweiter Ansatz ist es, FZ-Einkristalle billiger als bisher herzustellen. In Zusammenarbeit mit einer dänischen Firma arbeitet das IKZ daran, aus quasi minderwertigem Rohmaterial vergleichsweise reine Kristalle zu ziehen. Zugleich untersuchen Riemann und Kollegen, ob man den Herstellungsprozess dabei beschleunigen kann. Eine höhere Geschwindigkeit bei der Kristallerzeugung führt zwar meist zu mehr Strukturdefekten, doch gewisse Abstriche sind hinnehmbar: „Die Kristalle haben dann schlechtere elektronische Eigenschaften, aber wir wollen sie ja gar nicht in der Elektronik einsetzen“, sagt Riemann. Ziel des Kooperationsprojekts sei es vielmehr, die photovoltaische Qualität zu steigern und das Wachstum zu beschleunigen. „Bisher wurden lediglich Teststrukturen erzeugt“, berichtet der Wissenschaftler, „aber in einer groben Abschätzung kann man von Wirkungsgraden über 20 Prozent ausgehen.“

Ein weiteres, drittes Projekt am IKZ beschäftigt sich sozusagen mit der Veredelung von billigem „metallurgischem“ Silizium. Die Wissenschaftler ziehen Teststäbe aus einem Schmelztiegel. „Nach ersten Erfahrungen sind Einkristalle da nicht ausgeschlossen“, sagt Riemann – das wäre dann ein riesiger Sprung im Qualitäts-Kostenverhältnis.

Dr. Helge Riemann | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Berichte zu: IKZ Silizium Solarzelle Wafer Wirkungsgrad

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie