Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Synchrotronstrahlung enthüllt "Strickmuster" ultradünner Schichten

16.03.2004


Max-Planck-Materialwissenschaftler haben erstmals die atomare Struktur ultradünner Aluminiumoxydschichten entschlüsselt / Große Relevanz für neue Technologien


Abb. 1: Komplexes Beugungsbild niederenergetischer Elektronen nach Oxidation von NiAl(110). Die mit dieser und anderen Methoden gewonnenen Informationen reichen nicht aus, um die Struktur der entstehenden, nur zwei Atomlagen dicken Schichten aus Alumuniumoxyd präzise zu beschreiben.
Bild: Max-Planck-Institut für Metallforschung


Abb. 2 (oben): Seitenansicht einer Aluminiumoxydschicht (Al2O3) auf der Legierung Nickelaluminium NiAl(110). Die grünen bzw. großen roten Kugeln sind Nickel- bzw. Aluminium-Atome des NiAl-Substrats, die blauen Kugeln Sauerstoffionen, und die kleinen orangen und roten Kugeln verdeutlichen Aluminium-Ionen der Oxidschicht.

Abb. 3 (unten): Draufsicht auf eine Zwillingskorngrenze in einer ultradünnen Aluminiumoxidschicht auf der intermetallischen Legierung NiAl(110). Die Einheitszellen der Oxydschicht bzw. des NiAl-Substrats sind als großes bzw. kleines Rechteck eingezeichnet.
Bilder: Max-Planck-Institut für Metallforschung



Aluminiumoxyd, ein scheinbar unwichtiges weißes Pulver, könnte als ultradünne keramische Schicht eine Schlüsselrolle bei Hightech-Anwendungen spielen, die vom Wärme- und Korrosionsschutz in der Luft- und Raumfahrt über Hochleistungskatalysatoren in der Chemie bis hin zu neuartigen Computerspeichern reichen. Voraussetzung dafür ist aber die genaue Kenntnis der atomaren Schichtstruktur, die man bis heute nicht aufklären konnte. Doch jetzt ist es Andreas Stierle und seinen Kollegen am Max-Planck-Institut für Metallforschung in Stuttgart erstmals gelungen, die Struktur kristalliner, nur einen halben Nanometer dicker Aluminiumoxyd-Schichten zu entschlüsseln (Science, 12. März 2004). Der Durchbruch gelang nach vier Jahren intensiver Forschung mit hochbrillanter Synchrotronstrahlung am Deutschen Elektronen-Synchrotron (DESY) in Hamburg und an der Europäischen Synchrotron-Strahlungsquelle (ESRF) in Grenoble, Frankreich. Damit können Probleme, die dieses Material noch im Wege stehen, gezielter untersucht und behoben werden.



Ultradünne Schichten aus Aluminiumoxyd erzeugt man durch thermische Oxidation eines Nickelaluminium-Einkristalls einer bestimmten Orientierung Die Schichten bestehen aus lediglich zwei Atomlagen Sauerstoff- und Aluminiumionen, die gegenüber der Volumenstruktur eine stark verzerrte Konstellation einnehmen: Die Schicht wird durch das Substrat stark verzerrt, ähnlich einem Strickmuster, an dem man zieht. Trotz jahrelanger intensiver Forschungen war man bisher nicht in der Lage, die atomare Struktur dieser ultradünnen Schichten sowie ihre Bindung auf Metallunterlagen (Substrat) zu entschlüsseln. Doch erst diese Kenntnisse ermöglichen es, auf ihre Eigenschaften und speziell auf ihr Haftungsverhalten auf einer (metallischen) Unterlage zu schließen.

Vier Jahre lang haben die Forscher des Max-Planck-Instituts für Metallforschung an der Entschlüsselung dieser Struktur gearbeitet. Das war deshalb so schwierig, weil es für Aluminiumoxyd mehr als ein Dutzend mögliche Strukturvarianten gibt. Die Schichtstruktur zu simulieren, übersteigt die Rechenkapazität selbst der modernsten Rechner. Zudem braucht man weitergehende Informationen, als traditionelle Methoden der Oberflächenanalyse - wie die Rastertunnelmikroskopie oder die Beugung niederenergetischer Elektronen (LEED) - liefern können. Andreas Stierle, einer an der Strukturaufklärung beteiligten Max-Planck-Wissenschaftler, betont: "Nur mit hochbrillanter Synchrotonstrahlung ist man derzeit den Anforderungen gewachsen, derart komplexe Materialstrukturen aufklären zu können. Diese laserartig fokussierte Röntgenstrahlung ermöglicht es, sowohl die Oberfläche und den inneren Aufbaus der Schicht als auch ihre Grenzfläche zur Unterlage zu entschlüsseln."

In aufwändigen Messungen, durchgeführt am Deutschen Elektronensynchrotron (DESY) in Hamburg und an der Europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble, Frankreich, stellten die Forscher schließlich fest, dass die ultradünnen Schichten eine dem k-Aluminiumoxyd ähnliche Struktur aufweisen. Darüber hinaus zeigte das atomare "Strickmuster" der Schicht, dass einige Sauerstoff-Ionen (Abbildung 2, gelb markiert) - wie die Zähne eines "Reißverschlusses" - für eine regelmäßige Kopplung der Schicht auf der Unterlage sorgen. Die Wechselwirkungen der Schicht mit dem Substrat bedingen - in Verbindung mit den verzerrten Lagen - die hohe Stabilität der Aluminiumoxyd-Struktur.

Zudem wurde deutlich, dass so genannte Domänen-Strukturen einen entscheidenden Einfluss auf die funktionellen Eigenschaften solcher Schichten haben und damit künftige Anwendungen wesentlich beeinflussen. Abbildung 3 zeigt das Modell einer so genannten Zwillingskorngrenze. Diese Domänen beeinflussen beispielsweise, auf welche Weise Metallpartikel auf der Schichtoberfläche anwachsen können - wichtig zum Beispiel für Träger neuer Katalysatoren oder für die elektronischen Eigenschaften solcher Schichten.

Aus der jetzt aufgeklärten Struktur können Materialwissenschaftler und -entwickler von der Natur lernen: Dank der genauen Kenntnis solcher sich selbst organisierender Strukturen dünner Schichten kann man zum einen besser vorhersagen, wie sich solche Schichten in konkreten Anwendungen verhalten und zum anderen Materialien und Strukturen mit gewünschten Eigenschaften gezielter herstellen. Ultradünne Schichten aus Aluminiumoxyd könnten als hochtemperaturbeständige keramische Schichten für den Korrosionsschutz von Metalllegierungen eingesetzt werden, zum Beispiel in neuen Flugzeugturbinen oder in Raketenmotoren. Auch gelten diese Schichten als eines der am erfolgversprechendsten Ausgangssysteme für neue Modellkatalysatoren, die man für eine Chemie ohne unerwünschte oder schädliche Nebenprodukte benötigt. Darüber hinaus bieten ultradünne Schichten aus Aluminiumoxid auch Anwendungspotenzial für neuartige Permanent-Speichersysteme in der Computertechnik.

Originalveröffentlichung:

Stierle, F. Renner, R. Streitel, H. Dosch
X-ray Diffraction Study

Weitere Informationen erhalten Sie von:

Dr. Andreas Stierle
Max-Planck-Institut für Metallforschung, Stuttgart
Tel.: 0711 689-1842
Fax: 0711 689-1902
E-Mail: stierle@mf.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics