Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Synchrotronstrahlung enthüllt "Strickmuster" ultradünner Schichten

16.03.2004


Max-Planck-Materialwissenschaftler haben erstmals die atomare Struktur ultradünner Aluminiumoxydschichten entschlüsselt / Große Relevanz für neue Technologien


Abb. 1: Komplexes Beugungsbild niederenergetischer Elektronen nach Oxidation von NiAl(110). Die mit dieser und anderen Methoden gewonnenen Informationen reichen nicht aus, um die Struktur der entstehenden, nur zwei Atomlagen dicken Schichten aus Alumuniumoxyd präzise zu beschreiben.
Bild: Max-Planck-Institut für Metallforschung


Abb. 2 (oben): Seitenansicht einer Aluminiumoxydschicht (Al2O3) auf der Legierung Nickelaluminium NiAl(110). Die grünen bzw. großen roten Kugeln sind Nickel- bzw. Aluminium-Atome des NiAl-Substrats, die blauen Kugeln Sauerstoffionen, und die kleinen orangen und roten Kugeln verdeutlichen Aluminium-Ionen der Oxidschicht.

Abb. 3 (unten): Draufsicht auf eine Zwillingskorngrenze in einer ultradünnen Aluminiumoxidschicht auf der intermetallischen Legierung NiAl(110). Die Einheitszellen der Oxydschicht bzw. des NiAl-Substrats sind als großes bzw. kleines Rechteck eingezeichnet.
Bilder: Max-Planck-Institut für Metallforschung



Aluminiumoxyd, ein scheinbar unwichtiges weißes Pulver, könnte als ultradünne keramische Schicht eine Schlüsselrolle bei Hightech-Anwendungen spielen, die vom Wärme- und Korrosionsschutz in der Luft- und Raumfahrt über Hochleistungskatalysatoren in der Chemie bis hin zu neuartigen Computerspeichern reichen. Voraussetzung dafür ist aber die genaue Kenntnis der atomaren Schichtstruktur, die man bis heute nicht aufklären konnte. Doch jetzt ist es Andreas Stierle und seinen Kollegen am Max-Planck-Institut für Metallforschung in Stuttgart erstmals gelungen, die Struktur kristalliner, nur einen halben Nanometer dicker Aluminiumoxyd-Schichten zu entschlüsseln (Science, 12. März 2004). Der Durchbruch gelang nach vier Jahren intensiver Forschung mit hochbrillanter Synchrotronstrahlung am Deutschen Elektronen-Synchrotron (DESY) in Hamburg und an der Europäischen Synchrotron-Strahlungsquelle (ESRF) in Grenoble, Frankreich. Damit können Probleme, die dieses Material noch im Wege stehen, gezielter untersucht und behoben werden.



Ultradünne Schichten aus Aluminiumoxyd erzeugt man durch thermische Oxidation eines Nickelaluminium-Einkristalls einer bestimmten Orientierung Die Schichten bestehen aus lediglich zwei Atomlagen Sauerstoff- und Aluminiumionen, die gegenüber der Volumenstruktur eine stark verzerrte Konstellation einnehmen: Die Schicht wird durch das Substrat stark verzerrt, ähnlich einem Strickmuster, an dem man zieht. Trotz jahrelanger intensiver Forschungen war man bisher nicht in der Lage, die atomare Struktur dieser ultradünnen Schichten sowie ihre Bindung auf Metallunterlagen (Substrat) zu entschlüsseln. Doch erst diese Kenntnisse ermöglichen es, auf ihre Eigenschaften und speziell auf ihr Haftungsverhalten auf einer (metallischen) Unterlage zu schließen.

Vier Jahre lang haben die Forscher des Max-Planck-Instituts für Metallforschung an der Entschlüsselung dieser Struktur gearbeitet. Das war deshalb so schwierig, weil es für Aluminiumoxyd mehr als ein Dutzend mögliche Strukturvarianten gibt. Die Schichtstruktur zu simulieren, übersteigt die Rechenkapazität selbst der modernsten Rechner. Zudem braucht man weitergehende Informationen, als traditionelle Methoden der Oberflächenanalyse - wie die Rastertunnelmikroskopie oder die Beugung niederenergetischer Elektronen (LEED) - liefern können. Andreas Stierle, einer an der Strukturaufklärung beteiligten Max-Planck-Wissenschaftler, betont: "Nur mit hochbrillanter Synchrotonstrahlung ist man derzeit den Anforderungen gewachsen, derart komplexe Materialstrukturen aufklären zu können. Diese laserartig fokussierte Röntgenstrahlung ermöglicht es, sowohl die Oberfläche und den inneren Aufbaus der Schicht als auch ihre Grenzfläche zur Unterlage zu entschlüsseln."

In aufwändigen Messungen, durchgeführt am Deutschen Elektronensynchrotron (DESY) in Hamburg und an der Europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble, Frankreich, stellten die Forscher schließlich fest, dass die ultradünnen Schichten eine dem k-Aluminiumoxyd ähnliche Struktur aufweisen. Darüber hinaus zeigte das atomare "Strickmuster" der Schicht, dass einige Sauerstoff-Ionen (Abbildung 2, gelb markiert) - wie die Zähne eines "Reißverschlusses" - für eine regelmäßige Kopplung der Schicht auf der Unterlage sorgen. Die Wechselwirkungen der Schicht mit dem Substrat bedingen - in Verbindung mit den verzerrten Lagen - die hohe Stabilität der Aluminiumoxyd-Struktur.

Zudem wurde deutlich, dass so genannte Domänen-Strukturen einen entscheidenden Einfluss auf die funktionellen Eigenschaften solcher Schichten haben und damit künftige Anwendungen wesentlich beeinflussen. Abbildung 3 zeigt das Modell einer so genannten Zwillingskorngrenze. Diese Domänen beeinflussen beispielsweise, auf welche Weise Metallpartikel auf der Schichtoberfläche anwachsen können - wichtig zum Beispiel für Träger neuer Katalysatoren oder für die elektronischen Eigenschaften solcher Schichten.

Aus der jetzt aufgeklärten Struktur können Materialwissenschaftler und -entwickler von der Natur lernen: Dank der genauen Kenntnis solcher sich selbst organisierender Strukturen dünner Schichten kann man zum einen besser vorhersagen, wie sich solche Schichten in konkreten Anwendungen verhalten und zum anderen Materialien und Strukturen mit gewünschten Eigenschaften gezielter herstellen. Ultradünne Schichten aus Aluminiumoxyd könnten als hochtemperaturbeständige keramische Schichten für den Korrosionsschutz von Metalllegierungen eingesetzt werden, zum Beispiel in neuen Flugzeugturbinen oder in Raketenmotoren. Auch gelten diese Schichten als eines der am erfolgversprechendsten Ausgangssysteme für neue Modellkatalysatoren, die man für eine Chemie ohne unerwünschte oder schädliche Nebenprodukte benötigt. Darüber hinaus bieten ultradünne Schichten aus Aluminiumoxid auch Anwendungspotenzial für neuartige Permanent-Speichersysteme in der Computertechnik.

Originalveröffentlichung:

Stierle, F. Renner, R. Streitel, H. Dosch
X-ray Diffraction Study

Weitere Informationen erhalten Sie von:

Dr. Andreas Stierle
Max-Planck-Institut für Metallforschung, Stuttgart
Tel.: 0711 689-1842
Fax: 0711 689-1902
E-Mail: stierle@mf.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie