Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Platin-Nanopartikel "graben" sich in Zeolith-Träger ein und erzeugen dabei neue Poren

27.02.2004


Abgas-Katalysatoren von Autos bestehen aus winzigen Platin-Partikeln, die auf einem porösen keramischen Träger aufgebracht sind. Bei hohen Temperaturen können diese Partikel sintern, das heißt mit dem Trägermaterial zusammenschmelzen und chemische Reaktionen eingehen. Was passiert dabei nanoskopisch? Und könnte man diese Vorgänge vielleicht nutzen? Japanische Wissenschaftler um Hitoshi Kato haben Platin-Partikel auf einer Zeolith-Oberfläche genauer unter die Lupe genommen - besser gesagt unter das Elektronenmikroskop - und dabei Erstaunliches entdeckt: Partikel, die Gänge "buddeln".


Zeolithe sind kristalline, hochporöse Silikate. Auf Grund ihrer hohen Oberfläche und ihrer käfigartigen Poren, in die "Gastmoleküle" aufgenommen werden können, sind sie als Ionenaustauscher, Molekularsiebe und Katalysatoren im Einsatz. Einen solchen Zeolithen wählten die Forscher als Träger für ihre Platin-Partikel und setzten ihn bei 800°C einer Atmosphäre aus, die einem durchschnittlichen Autoabgas entsprach. Nach hundert Stunden sahen sie sich die kleinen platinhaltigen Zeolithkriställchen unter dem Elektronenmikroskop an. Und oh Wunder: Auf der Zeolith-Oberfläche waren keine Platin-Partikel mehr zu erkennen. Wo konnten sie sein? Der überraschende Befund: Die winzigen Edelmetall-Kügelchen hatten sich regelrecht in die Oberfläche des Zeolithen hinein gegraben. Dabei hinterließen sie kleine Kanäle, die ungefähr dem jeweiligen Durchmesser des Partikels entsprachen. Dabei ist eine Vorzugsrichtung innerhalb der Zeolith-Kriställchen zu verzeichnen. Die Kanäle haben einen sechseckigen Querschnitt, was im Einklang mit der Gitterstruktur des Zeolithen steht, und die Kanalwände werden aus Facetten des Kristalls gebildet. Abgesehen von je einem Platinkügelchen am Ende der Gänge sind diese ansonsten leer und die umliegende Kristallstruktur wird in keiner Wiese gestört. Offenbar sind einfach einige Atome aus dem Kristallgitter entschwunden. An den Berührungsstellen zwischen Platinteilchen und Zeolith katalysiert das Platin vermutlich eine chemische Reaktion zwischen den Silicium- und Sauerstoffatomen des Zeolithen und Bestandteilen der Abgas-Atmosphäre. Dabei können Bestandteile des Zeolithen in Form von SiO und Si(OH)4 aus dem Kristall austreten. Die Platinteilchen "sinken" immer tiefer in die so entstehenden Löcher ein.

"Das beobachtete Phänomen könnte genutzt werden, um maßgeschneiderte poröse Materialien herzustellen," hofft Kato. "Die Porenanzahl, -form und -größe ließen sich über die Anzahl und den Durchmesser der Platinpartikel, die Dauer des Erhitzens, den gewählten Zeolith-Typus und die Orientierung der Kriställchen einstellen."


Kontakt:

Hitoshi Kato
Materials Research and Development Laboratory
Japan Fine Ceramics Center
2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
Fax: (+81) 52-871-3599
E-mail: hkato@jfcc.or.jp

Angewandte Chemie
Postfach 101161 , D-69451 Weinheim
Tel.: 06201/606 321, Fax: -331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.org

Weitere Berichte zu: Platin-Partikel Pore Zeolith Zeolith-Oberfläche

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie