Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hard Science und Haute Cuisine

18.02.2004


Molekulargastronomen jonglieren mit Proteinen und Polymeren / Neue MaxPlanckForschung erschienen


Abb. 1: Die mikroskopische Aufnahme von Eischnee zeigt schön, dass die Wände der Luftbläschen wie Sandwiches aufgebaut sind: Im direkten Kontakt zur Luft stehen die grenzflächenaktiven Proteinschichten, dazwischen ist die wässrige Phase eingebettet.

Bild: MPI für Polymerforschung


Abb. 2: Blick auf die Gestalt eines teilweise "ausgewickelten" Protein-Modellmoleküls in verschieden Vergrößerungen. Links: Die stärkste Vergrößerung zeigt die Primärstruktur mit einzelnen Atomen, die nur 0,1 bis 0,2 Nanometer (milliardstel Meter) Abstand haben. Hier sieht man die Aminosäuren, die sich als Grundbausteine zum Protein verketten. Von ihrer Reihenfolge hängen die Funktion des Proteins und seine Sekundärstruktur (Mitte) ab: Diese kann aus verschiedenen Elementen wie Helices oder Faltblattstrukturen bestehen. Die Sekundärstruktur verknäult sich schließlich zur globuären, kugeligen Tertiärstruktur des kompletten Moleküls, die biologisch aktiv ist (rechts).

Bild: Helmut Rohrer



Ein Physiker am Mainzer Max-Planck-Institut für Polymerforschung verbindet seine Forschung an Weicher Materie elegant mit Kochen als Wissenschaft. Bei dem "Molekulargastronom" Thomas A. Vilgis wird deshalb die Küche zum Labor. Die neueste Ausgabe der MaxPlanckForschung (4/2003) hat Vilgis besucht und beschreibt was passiert, wenn "Hard Science" auf "Haute Cuisine" trifft.

... mehr zu:
»Enzym »Molekül »Polymer »Protein


Warum wird Fleisch durch Garen zart, aber durch zu langes Erhitzen zur zähen Schuhsohle? Was passiert beim Schlagen von Eischnee oder dem Klären von Butter? Mit solchen Fragen zur Chemie und Physik der Braten, Saucen oder Puddings beschäftigen sich Wissenschaftler, die sich "Molekulargastronomen" nennen. Thomas Vilgis zählt sich zu ihnen. Hauptamtlich erforscht er am Max-Planck-Institut für Polymerforschung in Mainz die Eigenschaften von Polymeren, Biopolymeren und die komplexen Materialien, die diese aufbauen können.

Emulsionen, Suspensionen, Schäume, Gele, biologische Membranen oder Fasern bestehen aus sehr großen Molekülen. Diese Moleküle, oft Polymere, beeinflussen sich gegenseitig über viele Größenskalen hinweg: Sie reichen von Nanometern (milliardstel Meter) bis zu Mikro- oder sogar Millimetern. Das verleiht allen diesen Materialien komplexe und zugleich charakteristische Eigenschaften. Deshalb fassen Wissenschaftler sie heute unter dem Oberbegriff "Weiche Materie" zusammen, der für ein vielseitiges und sehr dynamisches Forschungsfeld steht. Zur Weichen Materie gehören alle biologischen Materialien - außer den Biomineralien in Knochen und Zähnen - und damit auch alles, was wir essen.

Ein interessanter Zugang zum Kochen ergibt sich zum Beispiel aus der Perspektive der Proteine, also der Eiweiße. Diese Biopolymere sind große Moleküle, die aus Tausenden von Atomen bestehen. In lebenden Organismen spielen sie in praktisch allen biochemischen Prozessen eine zentrale Rolle. Entscheidend ist dabei, dass diese Moleküle ihre Gestalt ändern können - und damit auch ihre biologische Funktionsweise: Manche Proteine können etwa zwischen einer blattartig gefalteten Gestalt und einer schraubenförmigen Helix umschalten. Solche Vorgänge lösen nach heutigem Wissen sogar Gehirnerkrankungen wie BSE aus.

Thomas A. Vilgis und seine Mitarbeiter entwickeln neue mathematische Modelle, um zum Beispiel die Wirkungsweise von Antikörpern und Enzymen besser zu verstehen. Enzyme beschleunigen als Katalysatoren biochemische Reaktionen im Organismus, was viele Lebensfunktionen erst ermöglicht. Bestimmte Enzyme können aber auch beim Kochen helfen, beispielsweise als "Fleischzartmacher". Damit biologisches Gewebe fest und zugleich elastisch ist, durchziehen es Fasern aus Collagen. Diese Biopolymer-Fasern bestehen aus einer sehr stabilen molekularen Dreifachhelix - was aber das rohe Fleisch zäh macht. Das Erhitzen oder das Einwirken bestimmter Enzyme, zum Beispiel aus dem Saft frischer Ananas oder Feigen, kann das Collagen umwandeln: Die Dreifachhelices lösen sich auf und die Polymere verknüpfen sich zu einem losen räumlichen Netzwerk. Dabei entsteht ein Gel, das Fleisch wird zart.

Die Küche bietet unterschiedliche komplexe Materialien - und damit viel Futter für die wissenschaftliche Neugier von Molekulargastronomen. Hoch interessant sind zum Beispiel Grenzflächen: In Nahrungsmitteln bestehen sie meist aus einer nur wenige Nanometer dünnen Schicht geordneter Proteine. Solche Schichten können zum Beispiel Wasser und Fetttröpfchen miteinander verbinden, die sich sonst abstoßen. Dabei entstehen Emulsionen wie Milch und Butter. Molekulare Grenzflächen verleihen auch den Luftbläschen in Schäumen ausreichend Stabilität. Dazu müssen erst die Proteinmoleküle, die im Eiklar als Knäuel vorliegen, "ausgewickelt" werden: Das besorgt das Schlagen mit dem Schneebesen. Dabei wird aus dem transparenten Eiklar undurchsichtiges Eiweiß. Die veränderten Proteinmoleküle können nun die Wassermoleküle des Eis in feinen, sandwichartigen Membranen einschließen. Diese Membranen legen sich als stabile Hüllen um die Luftbläschen des Eischaums. Es verblüfft, dass ein so grobes Gerät wie ein Schneebesen die Gestalt von nur wenigen Nanometer kleinen Molekülen verändern kann. Die Nanotechnik hat also in der Küche eine lange Tradition!


Originalveröffentlichung:

N. Lee, T.A. Vilgis
Single chain force spectroscopy - reading the sequence of HP protein models
Eur. Phys. J. B 28, 415 (2002)

N. Lee, T.A. Vilgis
Preferential adsorption of hydrophobic-polar model proteins on patterned surfaces
Phys. Rev E 67, 050901 (2003)

E. Jarkova, N. Lee, T.A. Vilgis
Swelling behavior of responsive amphiphilic gels


Weitere Informationen erhalten Sie von:

Prof. Dr. Thomas A. Vilgis
Max-Planck-Institut für Polymerforschung, D-55021 Mainz
Tel.: +49 6131 379-143
Fax: +49 6131 379-340
E-Mail: vilgis@mpip-mainz.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/instituteProjekteEinrichtungen/institutsauswahl/polymerforschung/index.html
http://www.mpg.de/

Weitere Berichte zu: Enzym Molekül Polymer Protein

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht Aufgewärmt am Start
05.12.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie