Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Fehler haben große Wirkung

19.01.2004


Max-Planck-Materialforscher haben aufgedeckt, warum ferroelektrische Materialien im Nanometerbereich ihre nützlichen Eigenschaften verlieren


Abbildung 1a zeigt eine elektronenmikroskopische Aufnahme einer Bleizirkonat-Titanat-Insel ("PZT") im Querschnitt. "STO" ist die Strontium-Titanat-Unterlage der Insel. Die weißen "T"-Symbole bezeichnen die ebenfalls im Querschnitt abgebildeten linienförmigen Baufehler. Die hochaufgelöste elektronenmikroskopische Abbildung 1b zeigt einen Ausschnitt des ungestörten Kristallgitters fern von den Baufehlern, während Abbildung 1c eine computerbearbeitete Darstellung der Verzerrungen zeigt, welche in einem - wiederum im Querschnitt abgebildeten - Schlauch von ca. 8 mal 4 Nanometer Querschnitt um einen einzelnen Baufehler vorliegen. Die rot-gelben Spitzen markieren stark gestörte Gitterbereiche, während die grünen und blauen Bereiche das unverzerrte Gitter widerspiegeln.
Bild: Max-Planck-Institut für Mikrostrukturphysik


Darstellung des Size-Effekts. Aufgetragen ist ein Speichersignal zweier unterschiedlich dicker, aber lateral annähernd gleich ausgedehnter PZT-Inseln in Abhängigkeit von der angelegten Gleichspannung. Die fast Parallelogramm-förmige blaue Kurve spiegelt die ausgeprägte Speicherfähigkeit einer 20 Nanometer dicken PZT-Insel wider: Zwei stabile Zustände von etwa +110 und -50 Einheiten liegen bei abgeschalteter Gleichspannung (Null auf der Abszisse) vor. Dagegen ist im Falle der nur 10 Nanometer dünnen Insel das Parallelogramm zu einer einzigen Linie zusammengefallen (rote Kurve), die durch den Nullpunkt führt. Diese Insel hat mithin nicht die Fähigkeit, eines von zwei stabilen Signalen zu speichern.
Bild: Max-Planck-Institut für Mikrostrukturphysik



Viele Materialien verlieren ihre nutzbringenden Eigenschaften, wenn ihre äußeren Abmessungen unter einen bestimmten Schwellenwert fallen. Dieser so genannte Size-Effekt, dessen Ursachen vielfältig sein können, behindert die weitere Miniaturisierung von elektronischen, elektromechanischen und elektrooptischen Bauelementen. Für eine besonders aussichtsreiche Klasse von Materialien, die ferroelektrischen Oxide, haben Wissenschaftler des Max-Planck-Instituts für Mikrostrukturphysik jetzt herausgefunden, weshalb dieser Size-Effekt eintritt: Bestimmte, kaum ein Zehntel Nanometer dicke, linienförmige Baufehler verformen einen schlauchförmigen Materialbereich des ferroelektrischen Oxids von ca. 8 mal 4 Nanometer Querschnittsfläche so stark, dass das Material dort seine nutzbaren Eigenschaften verliert. Diese neuen Erkenntnisse zeigen, weshalb man bestimmte Baufehler strikt vermeiden muss, wenn ferroelektrische Oxide mit Abmessungen im Nanometerbereich eingesetzt werden und ihre elektronischen Speichereigenschaften und damit ihre Einsatzfähigkeit in neuartigen Bauelementen bewahren sollen (Nature Materials, Advanced Online Publication, 18. Januar 2004).



Die ständig steigenden Anforderungen an elektronische Bauelemente bringen es mit sich, dass immer neue Materialien in die Silizium-Mikroelektronik eingeführt werden, mit denen man teils neuartige Funktionen anstrebt, teils physikalische Grenzen klassischer Materialien überwinden will. Da der Trend zur Miniaturisierung weiter anhält, müssen diese neuen Materialien von vorn herein in sehr kleinen räumlichen Abmessungen eingesetzt werden. Diese liegen zumeist zwischen einigen wenigen und einigen Dutzend Nanometern. Ein Nanometer ist ein Millionstel Millimeter. Doch die Eigenschaften der meisten Materialien hängen im Nanometerbereich stark von ihren äußeren Abmessungen ab, so dass ihre gewünschte Funktionalität unterhalb einer bestimmten Abmessungs-Schwelle verloren geht. Deshalb versucht man in der materialwissenschaftlichen Grundlagenforschung, die Ursachen und Wirkungsmechanismen von Eigenschaftsänderungen bei verringerten äußeren Abmessungen, dem "Size-Effekt", detailliert aufzuklären.

Diese Herausforderung ist bei der Materialklasse der ferroelektrischen Oxide besonders akut, da diese Materialien in einem außergewöhnlich breiten Spektrum moderner elektronischer, elektromechanischer und elektrooptischer Bauelemente eingesetzt werden, aber gerade im Nanometerbereich ihre funktionsbestimmenden Eigenschaften verlieren können. Materialien dieser Art sind z.B. Bleizirkonat-Titanat, Strontiumwismut-Tantalat und Wismut-Titanat. Weil ferroelektrische Oxide binäre Signale speichern können, werden sie - in Kombination mit Silizium-Bauelementen - in dauerhaften "nichtflüchtigen" Speicherzellen eingesetzt, die ihre Information auch beim Abschalten der Versorgungsspannung nicht verlieren.

Gelänge es nun, nichtflüchtige Speicherzellen mit einer Datendichte von mehreren Milliarden Bit pro Quadratzentimeter herzustellen, könnten die Arbeitsspeicher von Personalcomputern wesentlich verbessert werden. Das zeit- und stromraubende Booten der Computer und das langsame Speichern der Daten auf der Festplatte würden dann der Vergangenheit angehören. Voraussetzung dafür ist aber eine Miniaturisierung der Speicherzellen bis in Dimensionen von wenigen Dutzend Nanometern. Die Frage, warum die ferroelektrischen Oxide unterhalb einer bestimmten Nanometer-Schwelle ihre Speichereigenschaften verlieren, ist daher zur Zeit von besonders großer Bedeutung. Weltweit arbeiten Festkörperphysiker daran, ohne dass bisher ein einheitliches Bild über die Ursachen der Size-Effekte in ferroelektrischen Oxiden entstanden wäre.

Einer Arbeitsgruppe um Ming-Wen Chu, Marin Alexe und Dietrich Hesse am Max-Planck-Institut für Mikrostrukturphysik in Halle (Saale) ist es nun gelungen, einen bisher nicht beachteten Mechanismus für den ferroelektrischen Size-Effekt aufzufinden. Die Max-Planck-Forscher konnten zeigen, dass bestimmte, kaum ein Zehntel Nanometer dicke, linienförmige Baufehler des Kristallgitters, die sich an der Grenzfläche zwischen kleinen, rund 10 Nanometer dünnen Bleizirkonat-Titanat-Inseln und der Strontiumtitanat-Unterlage ausbilden, ganz wesentlich zum Verlust der Speichereigenschaften dieser Inseln führen können. Mit Hilfe der hochauflösenden Elektronenmikroskopie haben die Wissenschaftler erkannt, dass jeder dieser - als "Gitterfehlpassungsversetzung" bezeichneten - Baufehler einen ca. 20 bis 50 Nanometer langen "Materialschlauch" des ferroelektrischen Oxids von ca. 8 mal 4 Nanometer Querschnittsfläche so stark verformt, dass das Material dort seine Speichereigenschaften verliert. Ist die ferroelektrische Insel so klein, dass ihr Volumen zu einem großen Teil aus derart verzerrten Materialschläuchen besteht, hat sie keinerlei Speichereigenschaften mehr. Die Ausbildung solcher Baufehler muss also strikt vermieden werden, wenn ferroelektrische Oxide mit Abmessungen im Nanometerbereich eingesetzt werden und dabei ihre Speichereigenschaften behalten sollen.

"Ein in der Halbleiterphysik seit langem bekanntes Problem, nämlich die störende Wirkung von Gitterfehlpassungsversetzungen auf die optischen und elektronischen Eigenschaften von Halbleiter-Nanostrukturen, hat sich überraschenderweise nun auch für die Speicherfähigkeit ferroelektrischer Nanostrukturen als relevant herausgestellt. Diese Entdeckung eröffnet neue Möglichkeiten, um bestimmte Materialkombinationen gezielt für den Einsatz ferroelektrischer Oxide in miniaturisierten Speicherbauelementen auszuwählen", sagt Prof. Ulrich Gösele, Direktor und Wissenschaftliches Mitglied am Max-Planck-Institut für Mikrostrukturphysik.

Dieses Projekt wurde durch die Max-Planck-Gesellschaft sowie durch die Volkswagen-Stiftung und die Deutsche Forschungsgemeinschaft (DFG) gefördert.

Weitere Informationen erhalten Sie von:

Priv.-Doz. Dr. Dietrich Hesse
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Tel.: 0345 5582-741, Fax: 0345 5511-223
E-Mail: hesse@mpi-halle.de

Dr. Dietrich Hesse | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-halle.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Advanced Materials: Glas wie Kunststoff bearbeiten
18.05.2018 | Karlsruher Institut für Technologie

nachricht Stärkstes Biomaterial der Welt schlägt Stahl und Spinnenseide
17.05.2018 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics