Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Fehler haben große Wirkung

19.01.2004


Max-Planck-Materialforscher haben aufgedeckt, warum ferroelektrische Materialien im Nanometerbereich ihre nützlichen Eigenschaften verlieren


Abbildung 1a zeigt eine elektronenmikroskopische Aufnahme einer Bleizirkonat-Titanat-Insel ("PZT") im Querschnitt. "STO" ist die Strontium-Titanat-Unterlage der Insel. Die weißen "T"-Symbole bezeichnen die ebenfalls im Querschnitt abgebildeten linienförmigen Baufehler. Die hochaufgelöste elektronenmikroskopische Abbildung 1b zeigt einen Ausschnitt des ungestörten Kristallgitters fern von den Baufehlern, während Abbildung 1c eine computerbearbeitete Darstellung der Verzerrungen zeigt, welche in einem - wiederum im Querschnitt abgebildeten - Schlauch von ca. 8 mal 4 Nanometer Querschnitt um einen einzelnen Baufehler vorliegen. Die rot-gelben Spitzen markieren stark gestörte Gitterbereiche, während die grünen und blauen Bereiche das unverzerrte Gitter widerspiegeln.
Bild: Max-Planck-Institut für Mikrostrukturphysik


Darstellung des Size-Effekts. Aufgetragen ist ein Speichersignal zweier unterschiedlich dicker, aber lateral annähernd gleich ausgedehnter PZT-Inseln in Abhängigkeit von der angelegten Gleichspannung. Die fast Parallelogramm-förmige blaue Kurve spiegelt die ausgeprägte Speicherfähigkeit einer 20 Nanometer dicken PZT-Insel wider: Zwei stabile Zustände von etwa +110 und -50 Einheiten liegen bei abgeschalteter Gleichspannung (Null auf der Abszisse) vor. Dagegen ist im Falle der nur 10 Nanometer dünnen Insel das Parallelogramm zu einer einzigen Linie zusammengefallen (rote Kurve), die durch den Nullpunkt führt. Diese Insel hat mithin nicht die Fähigkeit, eines von zwei stabilen Signalen zu speichern.
Bild: Max-Planck-Institut für Mikrostrukturphysik



Viele Materialien verlieren ihre nutzbringenden Eigenschaften, wenn ihre äußeren Abmessungen unter einen bestimmten Schwellenwert fallen. Dieser so genannte Size-Effekt, dessen Ursachen vielfältig sein können, behindert die weitere Miniaturisierung von elektronischen, elektromechanischen und elektrooptischen Bauelementen. Für eine besonders aussichtsreiche Klasse von Materialien, die ferroelektrischen Oxide, haben Wissenschaftler des Max-Planck-Instituts für Mikrostrukturphysik jetzt herausgefunden, weshalb dieser Size-Effekt eintritt: Bestimmte, kaum ein Zehntel Nanometer dicke, linienförmige Baufehler verformen einen schlauchförmigen Materialbereich des ferroelektrischen Oxids von ca. 8 mal 4 Nanometer Querschnittsfläche so stark, dass das Material dort seine nutzbaren Eigenschaften verliert. Diese neuen Erkenntnisse zeigen, weshalb man bestimmte Baufehler strikt vermeiden muss, wenn ferroelektrische Oxide mit Abmessungen im Nanometerbereich eingesetzt werden und ihre elektronischen Speichereigenschaften und damit ihre Einsatzfähigkeit in neuartigen Bauelementen bewahren sollen (Nature Materials, Advanced Online Publication, 18. Januar 2004).



Die ständig steigenden Anforderungen an elektronische Bauelemente bringen es mit sich, dass immer neue Materialien in die Silizium-Mikroelektronik eingeführt werden, mit denen man teils neuartige Funktionen anstrebt, teils physikalische Grenzen klassischer Materialien überwinden will. Da der Trend zur Miniaturisierung weiter anhält, müssen diese neuen Materialien von vorn herein in sehr kleinen räumlichen Abmessungen eingesetzt werden. Diese liegen zumeist zwischen einigen wenigen und einigen Dutzend Nanometern. Ein Nanometer ist ein Millionstel Millimeter. Doch die Eigenschaften der meisten Materialien hängen im Nanometerbereich stark von ihren äußeren Abmessungen ab, so dass ihre gewünschte Funktionalität unterhalb einer bestimmten Abmessungs-Schwelle verloren geht. Deshalb versucht man in der materialwissenschaftlichen Grundlagenforschung, die Ursachen und Wirkungsmechanismen von Eigenschaftsänderungen bei verringerten äußeren Abmessungen, dem "Size-Effekt", detailliert aufzuklären.

Diese Herausforderung ist bei der Materialklasse der ferroelektrischen Oxide besonders akut, da diese Materialien in einem außergewöhnlich breiten Spektrum moderner elektronischer, elektromechanischer und elektrooptischer Bauelemente eingesetzt werden, aber gerade im Nanometerbereich ihre funktionsbestimmenden Eigenschaften verlieren können. Materialien dieser Art sind z.B. Bleizirkonat-Titanat, Strontiumwismut-Tantalat und Wismut-Titanat. Weil ferroelektrische Oxide binäre Signale speichern können, werden sie - in Kombination mit Silizium-Bauelementen - in dauerhaften "nichtflüchtigen" Speicherzellen eingesetzt, die ihre Information auch beim Abschalten der Versorgungsspannung nicht verlieren.

Gelänge es nun, nichtflüchtige Speicherzellen mit einer Datendichte von mehreren Milliarden Bit pro Quadratzentimeter herzustellen, könnten die Arbeitsspeicher von Personalcomputern wesentlich verbessert werden. Das zeit- und stromraubende Booten der Computer und das langsame Speichern der Daten auf der Festplatte würden dann der Vergangenheit angehören. Voraussetzung dafür ist aber eine Miniaturisierung der Speicherzellen bis in Dimensionen von wenigen Dutzend Nanometern. Die Frage, warum die ferroelektrischen Oxide unterhalb einer bestimmten Nanometer-Schwelle ihre Speichereigenschaften verlieren, ist daher zur Zeit von besonders großer Bedeutung. Weltweit arbeiten Festkörperphysiker daran, ohne dass bisher ein einheitliches Bild über die Ursachen der Size-Effekte in ferroelektrischen Oxiden entstanden wäre.

Einer Arbeitsgruppe um Ming-Wen Chu, Marin Alexe und Dietrich Hesse am Max-Planck-Institut für Mikrostrukturphysik in Halle (Saale) ist es nun gelungen, einen bisher nicht beachteten Mechanismus für den ferroelektrischen Size-Effekt aufzufinden. Die Max-Planck-Forscher konnten zeigen, dass bestimmte, kaum ein Zehntel Nanometer dicke, linienförmige Baufehler des Kristallgitters, die sich an der Grenzfläche zwischen kleinen, rund 10 Nanometer dünnen Bleizirkonat-Titanat-Inseln und der Strontiumtitanat-Unterlage ausbilden, ganz wesentlich zum Verlust der Speichereigenschaften dieser Inseln führen können. Mit Hilfe der hochauflösenden Elektronenmikroskopie haben die Wissenschaftler erkannt, dass jeder dieser - als "Gitterfehlpassungsversetzung" bezeichneten - Baufehler einen ca. 20 bis 50 Nanometer langen "Materialschlauch" des ferroelektrischen Oxids von ca. 8 mal 4 Nanometer Querschnittsfläche so stark verformt, dass das Material dort seine Speichereigenschaften verliert. Ist die ferroelektrische Insel so klein, dass ihr Volumen zu einem großen Teil aus derart verzerrten Materialschläuchen besteht, hat sie keinerlei Speichereigenschaften mehr. Die Ausbildung solcher Baufehler muss also strikt vermieden werden, wenn ferroelektrische Oxide mit Abmessungen im Nanometerbereich eingesetzt werden und dabei ihre Speichereigenschaften behalten sollen.

"Ein in der Halbleiterphysik seit langem bekanntes Problem, nämlich die störende Wirkung von Gitterfehlpassungsversetzungen auf die optischen und elektronischen Eigenschaften von Halbleiter-Nanostrukturen, hat sich überraschenderweise nun auch für die Speicherfähigkeit ferroelektrischer Nanostrukturen als relevant herausgestellt. Diese Entdeckung eröffnet neue Möglichkeiten, um bestimmte Materialkombinationen gezielt für den Einsatz ferroelektrischer Oxide in miniaturisierten Speicherbauelementen auszuwählen", sagt Prof. Ulrich Gösele, Direktor und Wissenschaftliches Mitglied am Max-Planck-Institut für Mikrostrukturphysik.

Dieses Projekt wurde durch die Max-Planck-Gesellschaft sowie durch die Volkswagen-Stiftung und die Deutsche Forschungsgemeinschaft (DFG) gefördert.

Weitere Informationen erhalten Sie von:

Priv.-Doz. Dr. Dietrich Hesse
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Tel.: 0345 5582-741, Fax: 0345 5511-223
E-Mail: hesse@mpi-halle.de

Dr. Dietrich Hesse | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-halle.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Flammschutzmittel – Verborgene Lebensretter in Kunststoffen
20.07.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Wie man Stickstoff zwingt, sich zu binden
20.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie