Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchs Ofenfenster beim Brennen zusehen

15.12.2003


Auf dem zylindrischen Probenhalter aus Aluminiumoxid liegt das zu untersuchende Material. Von unten in den Ofen eingeführt, lassen sich Formänderungen und vieles mehr präzise erfassen
© Fraunhofer ISC


Jedes Kind weiß, dass Kohle brennbar ist. Und Bremsscheiben? - Zumal wenn sie wie in Formel-1-Rennwagen und einigen Topmodellen von Porsche und Mercedes aus Siliciumcarbid bestehen, das mit Kohlenstofffasern verstärkt ist? Hochleistungkeramiken wie diese werden wegen ihrer überlegenen Bremseigenschaften bald auch in mittelprächtigen Autos eingesetzt. Rasante Passfahrten können sie ebenso wie ihre metallischen Verwandten in Rotglut versetzen. In Lastwagen müssen sie die Bewegungsenergie einer tonnenschweren Fracht in Wärme umwandeln. Um zu verhindern, dass Luftsauerstoff die heißen Scheiben zu sehr angreift, werden bei der Planung der Werkstoffeigenschaften etliche Untersuchungen fällig: Wie verhält sich das Material bei verschiedenen Temperaturen und wie schnell oxidiert es dabei? Schwindet oder verzieht es sich?

... mehr zu:
»Ofenfenster

All solche Fragen können mit einem Laborgerät untersucht werden, das Wissenschaftler am Fraunhofer-Institut für Silicatforschung ISC zur Serienreife entwickelt haben. »Bereits der kleine TOMMI konnte als erstes Gerät berührungslos bei Sinter- oder Schmelzvorgängen zusehen«, erklärt Geschäftsfeldleiter Dr. Friedrich Raether. »Dies ist wichtig, um den Keramik- oder Glasrohling nicht zu beeinflussen. Schließlich müssen wir die Formänderungen mancher Proben sehr präzise und zeitaufgelöst vermessen - bis auf zwei Mikrometer genau.« Gleichzeitig werden weitere Größen wie Kriecheigenschaften des Materials oder das Gewicht des Körpers erfasst. Beim neueren und größeren Bruder TOM II können die Forscher vollständige thermooptische Messungen an bis zu vier Zentimeter großen Körpern durchführen. Zudem ist der Wärmeübergang zwischen Probe und Brennraum messbar und die Gaszusammensetzung variierbar. So können Brennerabgase wie im realen Ofenbetrieb imitiert werden.

Mit den gewonnenen physikalischen und technischen Kenngrößen des Werkstoffs füttern die Forscher Simulationsprogramme und optimieren schließlich das Verfahren. »So unterschiedliche Keramiken wie Isolatoren für Hochspannungsleitungen oder Sockel für Glühbirnen, aber auch Brücken und Kronen für die Dentaltechnik oder Bauteile für die Mikroelektronik haben wir mit der neuen Anlage bereits untersucht«, erzählt Raether. »Gerade bei solchen Massenartikeln gibt es eine ganz handfeste wirtschaftliche Frage: Kann der Ofen bei gleichen Produkteigenschaften bereits nach 80 Prozent der bisher üblichen Zeit ausgeräumt und neu beschickt werden?« Nebenbei spart dies viel Heizenergie, was bei Brenntemperaturen bis 2 000 °C einleuchtet.


Ansprechpartner:
Dr. Friedrich Raether
Telefon 09 31 / 41 00-2 00
Fax 09 31 / 41 00-2 99

Andreas Klimera
Telefon 09 31 / 41 00-2 34

Fraunhofer-Institut für Silicatforschung ISC
Neunerplatz 2
97082 Würzburg

| Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/german/press/pi/index.html
http://www.isc.fraunhofer.de/
http://www.sinteropt.de/

Weitere Berichte zu: Ofenfenster

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik