Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Katalysatoren aus ungewöhnlichen Materialmischungen

09.12.2003


Chemiker der Universität Jena beenden Verbundprojekt erfolgreich und suchen jetzt Praxispartner



Saubere Luft wird immer wichtiger - im Büro ebenso wie in der Fabrikhalle. Nicht zuletzt die Bestimmungen der Europäischen Union verschärfen die Anforderungen an die Abgasreinigung. Als Konsequenz müssen neue Katalysatoren entwickelt und gebaut werden. Diesem Thema widmet sich u. a. das vom Bundesforschungsministerium (BMBF) geförderte Programm "Innovative regionale Wachstumskerne - Netzwerk für innovative Oberflächentechnik und Anlagenbau" (NOA). An NOA sind auch Chemiker der Friedrich-Schiller-Universität Jena beteiligt. Den Forschern vom Institut für Technische Chemie und Umweltchemie ist es in ihrem Projekt gemeinsam mit fünf Partnern aus Wissenschaft und Wirtschaft in den letzten zwei Jahren gelungen, neue Katalysatormaterialien mit herausragenden Eigenschaften zu entwickeln. Am Donnerstag (11.12.) werden sie diese gewonnenen Erkenntnisse erstmals den Verantwortlichen vom BMBF präsentieren.



Über 40 Katalysatormaterialien sind in den letzten beiden Jahren im Rahmen des Teilprojekts "Selox" (Selektivoxidation), das mit 230.000 Euro alleine in Jena gefördert wurde, untersucht worden. "Wir haben dabei methodisches Neuland betreten", betont Dr. Peter Scholz. "Bis zu sechs Metallkomponenten werden jetzt in einem Katalysator verwendet", sagt der Jenaer Chemiker. Üblicherweise werden höchstens zwei Metallkomponenten eingesetzt. Die neuen Materialmischungen, die ausgiebig am Jenaer Institut getestet wurden, ermöglichen den Bau von Katalysatoren, die "technische Prozesse der Selektiv- und Totaloxidation mit besseren Umsätzen und Ausbeuten als bisher durchführen", resümiert Projektleiter Prof. Dr. Bernd Ondruschka.

Die Katalysatoren aus faserartigem oder kugelförmigem Material sollen als mobile wie als stationäre Anlagen in vielen Anwendungsbereichen eingesetzt werden können. "Ozonentfernung im Büro ist ebenso denkbar wie die Abgasreinigung in einer Müllverbrennungsanlage oder in einer Fabrikhalle", nennt Dr. Scholz Beispiele.

Produziert werden die neuen Katalysatormaterialien beim Dresdener Projektpartner, dem Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, in einem eigens entwickelten Schmelzextraktionsprozess. Dieser erlaubt nicht nur die Herstellung von Legierungen, sondern auch von "eingefrorenen" Schmelzen, die mit Hilfe klassischer Verfahren bisher nicht produzierbar sind. All diese neuen Materialien wurden im Jenaer Institut auf ihre Wirksamkeit u. a. bei der Abgasreinigung getestet. Auch Selektivoxidationen - bei denen ein Ausgangsstoff höher veredelt wird - führten mit den neuen Materialien zu hervorragenden Ergebnissen. Dies untersuchten die Jenaer Chemiker für die Umwandlung von Propan zu Propen und von Alkoholen zu Ketonen. "In allen Fällen zeigen diese Katalysatoren gleich gute oder bessere Eigenschaften als eingeführte technische Produkte", fasst Prof. Ondruschka die Ergebnisse zusammen.

Für die Einführung der neuen Materialien in den Katalysatorbau gehen die Chemiker von der Jenaer Universität nun auf Partnersuche. Neben den bisherigen Erkenntnissen können sie in die künftige Partnerschaft auch zwei Patentanmeldungen einbringen. "Unsere weitere Aufgabe ist es", betont Prof. Ondruschka, "über Langzeittests zu ermitteln, ob die Katalysatoren auch für Unternehmen von Interesse sind". Doch der Instituts-Direktor ist "guter Hoffnung. Und wenn unsere Erwartungen in den kommenden Tests untermauert werden, dann könnten durch die neuen Katalysatoren auch neue Arbeitsplätze geschaffen werden".

Kontakt:
Prof. Dr. Bernd Ondruschka
Institut für Technische Chemie und Umweltchemie der Universität Jena
Lessingstr. 12, 07743 Jena
Tel.: 03641 / 948400, Fax: 03641 / 948402
E-Mail: bernd.ondruschka@uni-jena.de

Axel Burchardt | idw

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics