Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue, erweiterte Simulationstechniken zur Optimierung von Werkstoffeigenschaften

26.09.2003


Das Verhalten von Blechteilen wird heute in der Automobilindustrie von der Produktion bis zum Crash vorausberechnet. Was bislang meist außen vor blieb, ist die Verfestigung umgeformter Teile. Jetzt stellt der Institutsleiter des Fraunhofer-Instituts für Werkstoffmechanik IWM, Professor Peter Gumbsch, in der aktuellen Ausgabe des Magazins "Science" (Science 301, S. 1857 (2003)) neue Ansätze vor, die es erlauben sollen, auch diese punktuell sehr unterschiedliche Verfestigung des Werkstoffs in Simulationen einzubeziehen. Das Ziel: Die Veränderung der Werkstoffeigenschaften und damit der Bauteile bei jedem Fertigungsschritt lückenlos zu beschreiben.


Genaue Vorhersagen zur Verformung von Fahrzeugkomponenten im Crash erfordern ausgefeilte Simulationstechniken. (Bild DaimlerChrysler)


Verfestigung - Beim Aufbiegen einer Heftklammer bleiben kleine Knicke da, wo das Material stark gebogen war. (Bild Fraunhofer IWM)



An einer Heftklammer kann es jeder ausprobieren: Einmal gebogen lässt sie sich nicht mehr gerade ausrichten, ein kleiner Knick bleibt immer da, wo die Biegung am stärksten war. Gebogen und geformt wird Metall in der industriellen Verwertung häufig, ein gewichtiger Zweig ist die Automobilindustrie. Das Materialverhalten - das Rückfedern von Blechen, die aus der Presse kommen, die Reaktion auf einen Crash bei hoher Geschwindigkeit - ist für die Qualität des Gesamtproduktes Auto von erheblicher Bedeutung.



Das Fraunhofer-Institut für Werkstoffmechanik IWM mit Sitz in Freiburg und Halle arbeitet der Fahrzeug-, aber auch der Kraftwerks-, der Maschinenbau- und Werkzeug-Industrie deshalb schon seit Jahren zu. Aus der Materialexpertise und aus experimentellen Ergebnissen entwickeln die IWM-Mitarbeiter Modelle, mit denen im Computer das Bauteilverhalten verlässlich simuliert, das heißt rechnerisch vorhergesagt werden kann. Das Besondere: Die Folgen von Materialveränderungen im Fertigungsprozess werden in die Berechnungen mit einbezogen. Aufgrund der Simulationsergebnisse können Umformprozesse so gestaltet werden, dass die Lebensdauer der Bauteile, die oft von hohen Temperaturschwankungen oder Druck belastet werden, erheblich steigt.

"Was bislang noch nicht möglich ist, ist die genaue Verformungsgeschichte von Metallen einzubeziehen. Denn wie oft und wie stark ein Blech an einer bestimmten Stelle während der Verarbeitung zum Bauteil gebogen wurde, wirkt sich auf seine Eigenschaften aus", erläutert Institutsleiter Peter Gumbsch die Bedeutung und den Forschungsbedarf zu einem typischen Materialverhalten von Metallen, das die Heftklammer jedem Laien verdeutlicht. Bis heute lasse sich deshalb nicht sagen, wie genau sich ein Bauteil bei der Weiterverarbeitung oder einem Zusammenstoß bei hoher Geschwindigkeit an den Stellen verhält, an denen es verfestigt ist.

"Wer das wissen will, muss an die physikalische Basis der Werkstoffe ran", meint Gumbsch. Auf seine Initiative ist im vergangenen Jahr im Fraunhofer IWM eine Arbeitsgruppe "Physikalische Modellierung" entstanden, die sich seitdem den werkstoffphysikalischen Elementarprozessen in verschiedenen Materialien bis hin zu deren atomistischer Basis widmet. "Bereits jetzt fließen die ersten Beschreibungen auf atomarer Basis in unsere Simulationsmodelle ein", sagt Gumbsch. "Im Fall der Verfestigung sind wir allerdings noch nicht ganz so weit".

Hier zeigen nun neue Arbeiten zur Mikrostruktur von Werkstoffen der Forschungsgruppe um Ladislas Kubin am französischen Forschungszentrum ONERA in Paris (Science 301, S.1879 (2003)) Wege auf, wie dies auf der Basis von Versetzungssimulationen gelingen könnte. Versetzungen sind kleine Fehler im Innern eines jeden Werkstoffs. Bewegen sie sich, verursacht dies Verformung, aber auch Verfestigung. Ließe sich die Entwicklung der Versetzungen während der Verformung nachvollziehen, könnten neue Ansätze gewonnen werden, um die Verformungsgeschichte zu berücksichtigen und damit im Bauteil Eigenschaftsunterschiede an verschiedenen Stellen zu berechnen, erläutert Peter Gumbsch und unterstreicht das Anwendungspotential, beispielsweise für die Fahrzeugindustrie.

Die Automobilindustrie investiert viel, um das Bauteilverhalten zu untersuchen und verlässlich vorherzusagen. Die klassischen Methoden versprechen begrenzten Erfolg. Erweiterte Simulationstechniken, die örtliche Unterschiede im Bauteil berücksichtigen, eröffnen dagegen neue Optimierungsmöglichkeiten. Dies gilt nicht nur für die klassischen Werkstoffe wie Stähle, sondern in noch stärkerem Maße für die so genannten neuen Leichtbauwerkstoffe, beispielsweise Magnesium.

Nützen würden solche neuen, erweiterten Simulationstechniken, so der Institutsleiter des Fraunhofer IWM, nicht nur in punkto Sicherheit. Die gesamte Prozesskette von der Herstellung des Vormaterials über die Verarbeitung bis hin zum Crash ließe sich mit Simulation optimieren. "Das Ziel", so Gumbsch, "ist, die Entwicklung der Werkstoffeigenschaften, die sich bei jedem Fertigungsschritt ändern, lückenlos zu beschreiben." Der Weg dorthin sei nun begonnen, aber weit. Mit einigen Jahren Forschungsarbeit sei schon zu rechnen, bis die Industrie von den neuen Erkenntnissen auf breiter Front profitieren kann.

Thomas Götz | idw
Weitere Informationen:
http://www.iwm.fraunhofer.de

Weitere Berichte zu: Simulationstechnik Verfestigung Werkstoffeigenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie