Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrowirbelsäule mit Selbstheilungskraft

12.06.2003


Mechanische Strukturen aus winzigen Perlen heilen nach Bruch spontan


Eine der vielen Eigenschaften, die Lebewesen künstlichen Strukturen voraus haben, ist ihre ganz erstaunlichen Fähigkeit zur Selbstheilung. Wie praktisch wäre es, wenn sich auch kaputte Gegenstände wieder selbst reparieren könnten. Erste Schritte in Richtung selbstheilender Materialien wurden bereits unternommen, einige Kunststoffe und Keramiken mit selbstheilenden Eigenschaften entwickelt. George M. Whitesides und Mila Boncheva von der Harvard University in Cambridge, USA, haben einen neuen Weg eingeschlagen, um unbelebter Materie Selbstheilung zu ermöglichen: Aus millimetergroßen Perlen bauten sie entsprechend dem Vorbild des Wirbeltier-Rückgrates Strukturen auf, die nach Bruch oder Ausrenken spontan in ihre ursprüngliche lineare Anordnung zurückfinden.

Eine Wirbelsäule besteht aus starren Strukturelementen, den Wirbeln, die von den elastischen Bandscheiben getrennt und durch Muskeln und Bänder zusammen gehalten werden. Durch dieses von der Natur fein ausgeklügelte Bauprinzip ist sie gleichzeitig fest und flexibel, federt Stöße ab und schützt das empfindliche Rückenmark. Dieses erfolgreiche Bauprinzip schauten die Harvard-Forscher ab. Die Rolle der Wirbel übernehmen sanduhrförmige, millimetergroße Kunststoff-Perlen. Durch ein Loch in ihrer "Taille" werden sie auf einen elastischen Faden gefädelt, der an den Enden mit Knoten gesichert ist. Der Faden steht dabei unter Spannung und entspricht den Muskeln und Bändern. Durch die Spannung wird ein Druck auf die Perlen ausgeübt, der sie in eine lineare Anordnung zwingt, bei der die Perlen jeweils senkrecht zu einander stehen. Die Perlen sind mit kleinen Kupferplättchen ausgestattet, die eine Schicht aus Lötzinn tragen. Wird die Perlenschnur über die Schmelztemperatur des Lötzinns erhitzt und wieder abgekühlt, sind die Perlen über die Lötstellen zu einem kompakten Stab fest verbunden. Diese Lötstellen entsprechen damit den Bandscheiben. 250 g kann eine derartige Mikro-Wirbelsäule tragen, bevor sie in zwei Teile bricht, die aber immer noch vom Faden zusammen gehalten werden. Erneutes Erhitzen in heißem Wasser und leichtes Schütteln des Gefäßes reichen aus, um den Bruch wieder zu heilen. Noch stabiler ist eine zweite Wirbelsäulen-Variante, bei der die verknoteten Fadenenden zusätzlich in eine Haltevorrichtung eingespannt werden. Diese Konstruktion wurde einem Streckverband nachempfunden, der bei Rückgratverletzungen zur Entlastung der Wirbelsäule angelegt wird. Diese Zugkräfte bringen die Perlenschnur nach einer Überlastung spontan wieder in die lineare Stabform zurück, einfaches Erwärmen heilt den Bruch wieder.


Kontakt:

Prof. Dr. G. M. Whitesides
Department of Chemistry and Chemical Biology
Harvard University
Cambridge, MA 02138, USA
Fax: (+1) 617-496-9857
E-mail: gwhitesides@gmwgroup.harvard.edu

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.harvard.edu
http://www.angewandte.org

Weitere Berichte zu: Mikrowirbelsäule Perlenschnur

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie