Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanozylinder ebnen den Weg zur Kunststoffelektronik

30.09.2002


Internationalem Forscherteam gelingt erstmals Synthese neuartiger supramolekularer Materialien für die Optoelektronik aus organischen Kristallen und Polymeren


Konventionelle organische Moleküle und leitfähige Polymere zu hochsymmetrisch strukturierten Materialien mit neuartigen elektronischen Eigenschaften zu vereinen, ist einem deutsch-amerikanischen Wissenschaftlerteam mit einer neuen Synthese-Strategie gelungen. Nach Anbringen spezifischer funktioneller Gruppen organisieren sich die scheiben- bzw. ringförmigen organischen Moleküle zu hochsymmetrischen, nur drei Nanometer dicken und 50 bis 100 Nanometer langen Zylindern, ähnlich wie Münzen in einer Geldrolle. Mit leistungsfähigen spektroskopischen Untersuchungsmethoden haben Forscher des Mainzer Max-Planck-Instituts für Polymerforschung wesentlich zur Aufklärung der atomaren Struktur dieser Nanozylinder beigetragen, deren Kern aus leitfähigen Molekülen oder Polymeren besteht und von einer isolierenden Schutzschicht umgeben ist. Die neuen Materialien sind wichtig für die Optoelektronik und eröffnen neue Wege für die supramolekulare Elektronik (nature, 26. September 2002).


"Abb. 1: Fotomontage aus Röntgendiffraktogramm, elektronenmikroskopischer Aufnahme und NMR-Spektren eines supramolekularen Molekülverbands. "


"Grafik: Max-Planck-Institut für Polymerforschung "

Die Entdeckung elektrisch leitfähiger organischer Kristalle und Polymere (Nobelpreis für Chemie 2000) hat das Spektrum der für die Optoelektronik geeigneten Materialien stark erweitert - allerdings unter der Voraussetzung, dass diese Materialien eine hohe Ladungsträgermobilität haben und sich leicht herstellen und verarbeiten lassen. Kristalle besitzen eine präzise Struktur und hohe elektronische Leitfähigkeit, doch sind sie schwer zu handhaben. Polymere hingegen sind billig herzustellen und lassen sich gut verarbeiten, doch ihre Ladungsträger sind vergleichsweise unbeweglich. Flüssigkristalle wiederum verfügen über ähnlich frei bewegliche Ladungsträger wie Kristalle und sind deshalb für Anwendungen gut geeignet; doch ihre Herstellung und Verarbeitung ist sehr aufwändig. Die Vorteile beider Materialtypen zu nutzen und hoch geordnete, leicht zu verarbeitende molekulare Systeme zu erzeugen, ist deshalb seit längerem das Ziel vieler Forschergruppen.

Jetzt ist es Wissenschaftlern am Max-Planck-Institut für Polymerforschung und ihren amerikanischen Partnern mit einem einfachen Trick gelungen, die vorteilhaften Eigenschaften von klassischen Polymeren und Kristallen zusammenzubringen. Die Forscher synthetisierten fluorhaltige Cluster aus dendritenartig verästelten Polymeren. Werden an den Enden dieser "Dendriten" einzelne Elektronen-Donator- bzw. Elektronen-Akzeptor-Gruppen angehängt, entstehen aus diesen Dendritenbäumen kuchenstückartige Bauteile, die sich zu winzigen supramolekularen Zylindern organisieren. Beide Bestandteile, organische Materialien wie Polymere, können als Donator- oder als Akzeptor-Gruppe genutzt werden.

Durch Selbstorganisation lassen sich auf diese Weise aus unterschiedlichen organischen Materialien supramolekulare Flüssigkristalle herstellen, die Donator-Akzeptor-Komplexe in ihrem Zentrum enthalten und vielversprechende optoelektronischen Eigenschaften aufweisen. Selbst ungeordnete Polymere verbinden sich auf diese Weise zu wohldefinierten Zylindern. Die fluorhaltige Peripherie der Moleküle schützt das Innere der Zylinder - wie eine Teflonbeschichtung - vor äußeren Einflüssen wie Feuchtigkeit.

"Abb. 2: Selbstorganisierter, zylinderförmiger supramolekularer Molekülverband mit optoelektronischer Funktion im Zentrum."
"Grafik: Max-Planck-Institut für Polymerforschung "

Die Mainzer Max-Planck-Forscher um Prof. Hans Wolfgang Spiess brachten vor allem ihre Kompetenz in der kernmagnetischen Resonanzspektroskopie (NMR) an Festkörpern in das Projekt ein. Für die optoelektronischen Eigenschaften der Nanozylinder ist die Stapelung der aromatischen Ringsysteme entscheidend. Mit einer besonders raffinierten neuen NMR-Technik konnten die Mainzer Forscher die genaue Anordnung der nur wenige Nanometer großen zylinderförmigen Strukturen bis auf das Abstandsniveau zwischen einzelnen Wasserstoff-Atomen (3.5 Angström) aufklären - Informationen, die für die Funktionalität des Materials, d.h. für das Ausmaß der erzielbaren elektronischen Leitfähigkeit, von entscheidender Bedeutung sind. Zudem ergaben die Untersuchungen, dass sich die Zylinder in den sehr regelmäßig gepackten Nanostrukturen immer senkrecht zur Oberfläche anordnen und dass diese Materialien mit 1012 Nanozylindern pro Quadratzentimeter eine hohe Dichte aufweisen.

"Abb. 3: Die Struktur zylinderförmiger Molekülverbände im Blickfeld verschiedener Charakterisierungsmethoden"
"Grafik: Max-Planck-Institut für Polymerforschung "

Der Erfolg dieses Projektes beruht wesentlich auf der heutigen Leistungsfähigkeit der NMR-Spektroskopie, die ihre Resultate mit geringen Substanzmengen und in kürzester Zeit - gewissermaßen "über Nacht" - vorlegen kann. Zusammen mit den Informationen über Synthese und Funktionseigenschaften der neuen Materialien sind dadurch bereits jetzt wichtige Details ihrer molekularen Strukturen bekannt, die es erlauben, die neuen Materialien sehr bald in elektronischen Bauelementen einzusetzen. Besonders faszinierend erscheint hierbei die Möglichkeit, jeden einzelnen Zylinder in diesem Molekülverband separat zu nutzen, um letztlich supramolekulare elektronische Bauelemente als Alternative zur bisherigen Molekularelektronik zu verwirklichen.

Der Forschungsstandort Mainz blickt heute auf eine jahrzehntelange Tradition in der Entwicklung optoelektronischer Materialien zurück. Bahnbrechend waren seit den 1980er Jahren Beiträge zu den so genannten diskotischen Flüssigkristallen. Die Selbstorganisation dieser scheibenförmigen Moleküle in ausgedehnten Stapelstrukturen dient als Grundlage für ihre Nutzung als optoelektronische Leiter auf molekularer und nanoskopischer Ebene. Erste elektronische Bauelemente von Leuchtdioden über Transistoren bis hin zu Solarzellen konnten so seit den späten 1990er Jahren entwickelt werden. An diesen Arbeiten war das Mainzer Max-Planck-Institut für Polymerforschung - in enger Kooperation mit der Universität Mainz - maßgeblich beteiligt. Die Kooperation mit der Universität Mainz führte im April 2001 zur Bildung eines "Zentrums für multifunktionelle Werkstoffe und miniaturisierte Funktionseinheiten" (kurz "Nanozentrum"), das vom Bundesministerium für Bildung und Forschung mit insgesamt 9 Mio. € gefördert wird.

Dr. Bernd Wirsing | Presseinformation

Weitere Berichte zu: Molekül Nanozylinder Polymer Polymerforschung Zylinder

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen