Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jülicher Brennstoffzellen-Know-how hält Einzug in die Biomedizin

23.08.2002


Diese hochporöse Halbkugelschale aus Titan haben Jülicher Wissenschaftler mit der Platzhaltermethode gefertigt: Sie dient als Prototyp für ein Hüftimplantat.

Foto: Forschungszentrum Jülich


Hochporöse Werkstoffe: Von der Brennstoffzelle in die Hüfte

Am Forschungszentrum Jülich entwickeln die Wissenschaftler neue Materialien für bessere Brennstoffzellen. Doch für ihre hochporösen Werkstoffe - Substanzen mit vielen Hohlräumen, ähnlich einem löchrigen Käse - interessieren sich neuerdings auch Biomediziner. Denn: In einem mittlerweile patentierten Verfahren stellen die Jülicher Wissenschaftler hochporöse Halbzeuge mit veränderlicher, aber sehr gleichmäßiger "Lochgröße" her. An dem Prototyp eines Hüftimplantates aus porösem Titan haben sie ihre Technik optimiert.

Für medizinische Implantate hat Titan den Vorteil, dass es für die Patienten bestens verträglich ist. Knochenimplantate werden in der Regel aus reinem Titan oder Titanlegierungen hergestellt. Die Oberflächen müssen aber nachträglich porös gemacht werden, damit sie mit dem Knochen verwachsen. Besser wäre es, das Implantat direkt aus hochporösem Material zu fertigen. Dieses könnte Federungseigenschaften und Stabilität des Knochens sehr gut imitieren. Doch das ist nicht einfach, denn: Wie man sich leicht vorstellen kann, ist ein Material umso empfindlicher gegenüber mechanischer Bearbeitung, je poröser, je löchriger es ist. Zudem ist gerade poröses Titan schwierig herzustellen.

Ein Lösungsansatz für diese Probleme kommt von ungewöhnlicher Seite: Aus der Brennstoffzellenforschung. Normalerweise fertigen die Wissenschaftler des Instituts für Werkstoffe und Verfahren der Energietechnik (IWV-1, Leiter Prof. Dr. Detlev Stöver) hochporöse Strukturen aus temperaturbeständigen Werkstoffen, die als Substrate und Elektroden für Hochtemperatur-Brennstoffzellen dienen. Dazu verwenden sie unter anderem die Platzhaltermethode: Der Platzhalter, eine Substanz mit bestimmten chemischen Eigenschaften, wird zunächst mit dem jeweiligen Materialpulver gemischt und die Mischung anschließend unter hohem Druck zu Platten oder Zylindern verpresst. Anschließend wird der Platzhalter im Ofen wieder entfernt, übrig bleibt das "löchrige" Material. Im letzten Schritt wird dieses durch Erwärmung - durch Sintern - verfestigt. "Mit unserem Verfahren können wir die Porengröße über einen großen Bereich bis maximal zwei Millimeter sehr genau einstellen", erklärt Dr. Martin Bram vom IWV-1. "Das ist für viele Anwendungen - nicht nur für die Brennstoffzelle - von großer Bedeutung. Gleichzeitig verleiht der Platzhalter den gepressten ‚Rohlingen’ eine ausreichende Stabilität, so dass wir sie vor Entfernung des Platzhalters konventionell mechanisch bearbeiten können."

Die Jülicher Wissenschaftler haben die vielfältigen Möglichkeiten ihres Verfahrens erkannt und ihr Know-how an den verschiedensten Werkstoffen getestet. "Gerade für das biomedizinisch interessante Titan ist es schwierig, einen geeigneten Platzhalter zu finden. 99 Prozent aller möglichen Substanzen verunreinigen das Titan so stark, dass es für biomedizinische Anwendungen ungenügende Eigenschaften aufweist", sagt Martin Bram. "Doch mit den Platzhaltern, die wir verwenden, konnten wir auch Titan erfolgreich verarbeiten." Als Beispiel haben die Jülicher Wissenschaftler aus einem porösen Titan-Rohling Halbkugelschalen gefertigt, die für die Verankerung eines Hüftimplantats im Hüftknochen vorgesehen sind. Kein Wunder also, dass sich die Biomedizin dafür interessiert, beispielsweise eine Schweizer Firma, die schon eine Lizenz zum patentierten Herstellungsverfahren für hochporöse Implantate erworben hat.

- rdr - | Aktuelles

Weitere Berichte zu: Biomedizin Brennstoffzelle Implantat Platzhalter Titan

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie