Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Saarbrücker Werkstoffwissenschaftler optimieren Titanimplantate

03.11.2000


Neue Erkenntnisse in der Forschung zur Herstellung maßgeschneiderter Titanimplantate ziehen erneute DFG-Förderung nach sich

Das neue, von der DFG genehmigte Schwerpunktprogramm 1100 zum Thema "Grenzflächen zwischen Werkstoff und Biosystem" wurde von Professor Dr. Jürgen Breme, Lehrstuhl für Metallische Werkstoffe, Universität des Saarlandes, mitinitiiert. Die DFG unterstützt im Rahmen dieses Schwerpunktprogramms zwei neue Projekte der Saar-Uni. Sie schließen direkt an das Projekt "Einfluss der Oberflächenzusammensetzung und -struktur auf die Wechselwirkung lebende/tote Materie bei Titanwerkstoffen" an, das von April 1997 bis Juli 2000 durch die DFG gefördert wurde und erfolgreich zum Abschluss kam.

In diesem ersteren interdisziplinären Projekt sollten vor allem klinische Probleme bei Werkstoffen für Langzeitimplantate, wie etwa Gefäßprothesen, Zahnimplantate oder Hüftgelenksprothesen, durch nachhaltige Verbesserung gelöst werden. Als besonders gut geeigneter Werkstoff hat sich das biokompatible Titan herausgestellt. An die Titan-Implantate werden in der Praxis unterschiedliche Anforderungen gestellt. Körperzellen müssen sich entweder fest an den Werkstoff anlagern und mit ihm "verwachsen" (Zahnimplantate, Hüftgelenksprothesen) oder aber vom Werkstoff "Abstand halten" wie bei Gefäßprothesen, die dauerhaft in Adern eingepflanzt werden, um diese offen zu halten und Ablagerungen zu vermeiden.
Dem Saarbrücker Forscherteam um Professor Dr. Breme ist der Nachweis gelungen, dass diese unterschiedlichen Reaktionen von menschlichen Zellen durch das nur wenige Nanometer dünne Oberflächenoxid der Titanwerkstoffe verursacht werden. Titan reagiert sofort im Kontakt mit Sauerstoff und bildet eine sehr gleichmäßige und geschlossene Schicht aus Titanoxid. Eine aufgerauhte Struktur mit Rillen fördert die Zellanlagerung - die Zellen strecken sich regelrecht aus und verankern sich fest mit dem Werkstoff.

Innerhalb des neu anlaufenden Schwerpunktprogramms "Grenzflächen zwischen Werkstoff und Biosystem", das auf eine Laufzeit von 6 Jahren ausgelegt ist, wurden dem Lehrstuhl für Metallische Werkstoffe zwei weitere Projekte mit einer Gesamtsumme von DM 468.000,- für das 1. Jahr genehmigt. Nun eröffnet sich den Saarbrücker Forschern die Möglichkeit, ihr Wissen über den oberflächennahen Bereich von Biomaterialien im Kontakt mit unterschiedlichen Körpermedien (Körperflüssigkeit, Blut) zu vertiefen. Neue Erkenntnisse können dann zur Herstellung maßgeschneiderter Titan-Implantatwerkstoffe mit besonderen Zellreaktionen genutzt werden.

Das eine Projekt "Entwicklung eines Verbundwerkstoffes mit funktionellen Oberflächen-Strukturen (Lotuseffekt) in Kombination mit funktionellen Beschichtungen zur Optimierung der hämokompatiblen bzw. thrombogenen Eigenschaften" wird feder-führend von Dr. Volker Biehl (Lehrstuhl Prof. Breme, Metallische Werkstoffe) geleitet. Ziel ist es, die in Wechselwirkung zum Blut stehenden Oberflächen so zu optimieren, dass je nach Anwendung entweder eine Blutgerinnung (Thrombenbildung) vermieden wird (hämokompatible Stents als Gefäßprothesen) oder ein thrombogenes (klumpenbildendes) Verhalten erreicht werden kann. Die Titanoxidschicht wird beispielsweise hinsichtlich ihrer elektrischen Leitfähigkeit verändert, und die dann auftretenden Zellreaktionen charakterisiert. Die Werkstoffe mit den entsprechenden gezielt hergestellten Oberflächenflächenstrukturen und/oder -zusammensetzungen werden vom Lehrstuhl für Metallische Werkstoffe zur Verfügung gestellt. Die hämokompatiblen bzw. thrombogenen Eigenschaften werden von Professor Dr. Ulrich Theo Seyfert, Abteilung für klinische Haemostaseologie und Transfusionsmedizin der Universität des Saarlandes, bestimmt.

Das andere Projekt "Struktur und modifikationsabhängige Einstellung der Grenzflächen an Titanbasiswerkstoffen zum Hartgewebe" wird federführend von Dr. Eva Eisenbarth (Lehrstuhl Prof. Breme, Metallische Werkstoffe) geleitet. Die Werkstoffoberfläche soll in diesem Projekt im makroskopischen, mikroskopischen und im Nanobereich strukturiert werden. Beschichtungen auf Titanoxidbasis zur Variation der Oberflächenzusammensetzung sollen mit Hilfe von verschiedenen Methoden (MOCVD-, PVD-, Sol-Gel-Verfahren) erfolgen. Ziel des Projektes wird die Definition biologisch relevanter Charakteristika der Grenz-Fläche sein, die mit den unterschiedlichen Werkstoffeigenschaften und Oberflächenparametern in Zusammenhang stehen.

Da das Schwerpunktprogramm interdisziplinär angelegt ist, werden beide Projekte in Zusammenarbeit mit dem Lehrstuhl für Experimentelle Zahnmedizin (Professor Dr. R. Thull) der Universität Würzburg bearbeitet.

Tamara Weise | idw

Weitere Berichte zu: DFG Metallisch Schwerpunktprogramm

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie